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Abstract

In this thesis we study existence of bounded length distortion (BLD)
mappings between manifolds by mimicing the proof of a Varopoulos type
result. The restraints mimic the volume-growth invariants of the case
of quasiregular maps between Riemannian manifolds. Our basic method
is to construct invariants from the ’coarse volumes’ of covering spaces,
which can be in some situations compared with the combined growth of
the original manifold and its fundamental group.
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1 Introduction

The main results of this thesis are mainly motivated by results of Jormakka
[Jor88] and [VSCC92] that state the following:

Theorem A. Let N be compact orientable n-dimensional Riemannian mani-
fold. If the fundamental group Π1(N ) of the manifold N is at least of polynomial
growth of order d > n, then there exists no quasiregular mapping from Rn to N .

This type of result is sometimes called a Varopoulos type result. The standard
proofs given (see for example [VSCC92, theorem X.5.1, p. 146]) rely heavily on
the analytical structure of quasiregular mappings, which is something we wish in
this thesis to avoid. We will instead find ways to imitate the somewhat hidden
idea of isoperimetric inequalities used in these proofs.

Quasiregular mappings were originally called with the maybe more descrip-
tive name of bounded distortion mappings. What we shall focus on this thesis
are mappings called bounded length distortion mappings. These are defined as
follows. (Basic properties will be given in section 5.)

Definition. A continuous open discrete mapping f : M → N between two
manifolds with path-length -structure is said to be a bounded length distortion-
or a BLD mapping, if there exists a constant L such that

L−1ℓ(γ) ≤ ℓ(f ◦ γ) ≤ Lℓ(γ)

for any rectifiable path γ : [0, 1] → M. In the case of Riemannian manifolds
BLD mappings appear as a special case of quasiregular mappings, but they
can be defined on any manifold with a path-length structure. A path-length
structure will be defined in section 4.1 but in essence a path-length structure on
a metric space X is a collection of paths together with a length functional such
that any two points in X can be connected with a path with length arbitrarily
close to the distance of these two points.

The tools that we use are very geometrical and our spirit is that of coarse
methods. Coarse geometry can be seen to be the study of co-local geometric
properties. Much of the spirit of this thesis, especially its use of coarse methods,
is inherited from the work of Mischa Gromov, especially from [Gro99]. Our main
invariant will be the growth rate of a metric space that we will define in section
3.2. This will be a coarse concept and our main tools will be different classes
of mappings that preserve some coarse properties of a space. With growth rate
and some suitable classes of mappings we can transform the ideas of volume
growth of Riemannian manifolds in to concepts applicable in the continuous
and discrete setting.

We will spend a lot of time with growth rate, and of any mathematical prop-
erty it is natural to ask under what kinds of maps is it preserved. We shall study
in this thesis four classes of mappings that are connected to this question; BLD
mappings (properly discussed in section 5), coarse quasi-isometries (defined in
section 3.1), Lipschitz quotient maps and coarse Lipschitz quotient maps (both
defined in section 3.4). We will in fact see that BLD mappings are Lipschitz
quotients and that coarse quasi-isometries and Lipschitz quotient mappings are
both coarse Lipschitz quotient mappings. Coarse quasi-isometries will be map-
pings that preserve growth rate in the best possible way, and we will use them on
several occasions to conjugate our results between spaces without obstructing

4



growth concepts. BLD mappings do not preserve growth rate completely, but
are able at least in the case of manifolds to take into consideration the growth
rate of of the fundamental group as well as the growth of the manifold. Coarse
Lipschitz quotient mappings are, as the name suggests, coarse and more general
versions of Lipschitz quotient mappings. They do not give us an equivalence re-
lation as coarse quasi-isometries do, but they have other good properties. Most
important properties of (coarse) Lipschitz quotient mappings or us are that
(coarse) Lipschitz quotient mappings cannot increase growth rate in an essen-
tial manner and that BLD mappings are always Lipschitz quotient mappings
when the domain is complete. The relation between coarse quasi-isometries and
coarse Lipschitz quotients can be seen to be in essence the relation that exists
generally between isomorphisms and morphisms. We even use these two in this
manner. For example when showing the growth rate conservation property of
coarse quasi-isometries in section 3.4 we basically show that the coarse quasi-
isometry and its ’inverse’ are both coarse Lipschitz quotients and thus cannot
increase growth rate in either direction.

The coarse methods cannot talk about any local properties in a natural man-
ner. For the definition and basic properties of BLD mappings we will however
need to use lots of concepts relying on local concepts. The natural domain for a
BLD mapping will be a complete manifold, but we will need to bind the geom-
etry of our manifolds in order to get the best possible results. First of all, our
concept of growth rate is hard to define uniquely and more mechanical to use
if the volume of our manifold grows in a superexponential manner. In section
3.2.2 we will give a restriction by requiring a condition of weak doublingness and
note that this condition is filled by Riemannian manifolds with Ricci curvature
bounded from below. Other bounds concern the minimal and maximal size of
non null-homotopic loops. These requirements will give rise to good properties
of the fundamental group of our manifold. (It will be finitely generated and
as such weakly doubling for example.) Also as BLD mappings are defined by
how they act on rectifiable paths we must study how to find, use and transfer
path-length structures.

Our main results will give non-existence of BLD mappings in a more wider
setting than what is given in a standard Varopoulos type result by showing that
BLD mappings lift to BLD mappings and that they cannot increase growth
rates. What we want to prove will essentially be the following: ( Theorem B
corresponds to theorem 5.17 when combined with results from section 5.5 that
generalize our results to quasiconvex manifolds.)

Theorem B. Let M and N be quasiconvex manifolds and assumeM is com-
plete. If there exists a BLD map f :M→N , then

Ord(M̃) ≥ Ord(Ñ ) and Ord(M) ≥ Ord(N )

where M̃ and Ñ are the universal covers ofM and N , respectively.

Corollary C. Let N be compact quasiconvex n-dimensional manifold. The
fundamental group of N is finitely generated and coarsely quasi-isometric to
the universal cover of N . If the growth rate of Π1(N ) is strictly greater than
polynomial rate of order n, there exists no BLD mapping f : Rn → N .
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2 Notation, basic definitions and preliminary no-

tions

We begin by agreeing on our notation. The composition of mappings f : A→ B
and g : B → C is written g ◦ f , so (g ◦ f) (x) = g (f(x)). The composition of
paths, however, is written as follows. If α, β : [0, 1]→ X, with α(1) = β(0), then
the composition of these paths is denoted by α ∗ β and defined to be

α ∗ β : [0, 1]→ X, α ∗ β(t) =
{
α(2t), when t ∈ [0, 12 ]
β(2t− 1), when t ∈ [ 12 , 1]

If we are composing a large number of paths we may omit the asterisk and
denote αβ := α∗β if it clarifies the notation. The image of a path as a mapping
γ : [0, 1]→ X is sometimes denoted |γ| := Im(γ).

A path γ : [0, 1] → X with γ(0) = γ(1) is called a loop. We will often need
paths connecting given two points in a space. If x and y are two points in a
path-connected topological space X, we denote by γ : xy y a continuous path
γ : [0, 1] → X such that γ(0) = x and γ(1) = y. Suppose that in addition the
space in question has a metric d and a well defined path-length ℓ for paths (see
section 4.1 for details). If we then have that ℓ(γ) = d(x, y), we denote γ : x gy y.
Such a length-minimizing path is called a geodesic.

If we have a function f : X → Y and subsets A ⊂ X, B ⊂ Y such that
f [A] ⊂ B we denote f : (X,A) → (Y,B). If the subset in question consists of
a single point x0 ∈ X we call the pair (X, {x0}) a set or a space with a fixed
point and denote it by (X,x0). A mapping f : X → Y between metric spaces is
called an L-Lipschitz mapping, if

dY (f(x), f(y)) ≤ LdX(x, y)

for every pair of points x, y ∈ X. We will have several situations where our
mappings are not surjective, but merely such that all the points have a global
upper bound for the distance to the image of our mapping. For this reason we
do not demand in the following definition a Bi-Lipschitz map to be necessarily
surjective.

A mapping f : X → Y between metric spaces is called an L-bi-Lipschitz, if
for every pair of points x, y ∈ X we have that

1

L
dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y).

A surjective bi-Lipschitz map is always a homeomorphism.
We will later need to use some basic results concerning topological dimension.

We give the definition here, for further results and the proofs of the following
results we refer to [HW41].

Definition 2.1. We define the topological dimension dim(X) of a topological
space X in the following inductive way.

The empty set has dimension -1. A topological space X has dimension at
most n, denoted dim(X) ≤ n, if every point of X has a neighbourhood basis
consisting of sets whose boundaries have dimension at most n−1. The space X
has dimension exactly n, if dim(X) ≤ n, and it is not true that dim(X) ≤ n−1.

Theorem 2.2. If f : X → Y is a Lipschitz mapping between two metric spaces
and dim(X) ≤ n, then dim(Im(f)) ≤ n.
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2.1 Manifolds

We now define the basic element of study in this thesis; a manifold. We prove
some useful topological properties of manifolds that we will use frequently
throughout the rest of this thesis. Later in section 4.1 we will also define a
path-metric structure for a manifold and prove some more sophisticated results.
For a precise exposition of manifolds and their properties we refer to [Lee03].

Definition 2.3. An n-dimensional manifoldM is a nonempty topological space
with the following three properties:

(M1) Every point has a neighbourhood homeomorphic to an open subset of
Rn. Such neighbourhoods are called chart-neighbourhoods.

(M2) The topology ofM has a countable basis. This property will be referred
as the N2-property.

(M3) The topology ofM has the Hausdorff property.

Remark 2.4. The property (M1) can be replaced with the following property
that leads to an equivalent definition;

(M1’) Every point has a neighbourhood homeomorphic to Rn.

We shall use both of these equivalent properties in the sense that we can choose
chart-neighbourhoods to be homeomorphic to the whole of Rn of just to some
subdomain without special notice.

We will often use the following useful lemma when constructing countable
bases with needed properties for a given topology.

Lemma 2.5. Let X be a topological space with a countable basis for its topology.
Let {{Vx} | x ∈ X, i ∈ I} be a collection of neighbourhood bases for all points of
X. Then the topology of X has a countable basis consisting of sets V x

i ∈ Vx.

Proof. We begin by noting that any topological space X with the N2-property
has also the so called Lindelöf property which states that every open cover of
X has a countable subcover. This follows quite easily, because if we have an
arbitrary open cover D of X, we may choose for each x ∈ X a neighbourhood U
from the countable basis that is a subset of some A ∈ D. When we pick for each
such neighbourhood U one element A of the cover D containing this neighbour-
hood we have the needed countable cover, as there can be at most countably
many selections since the basis of the topology was assumed countable.

Now we show that if a topological space has a countable basis, then every
basis of its topology has a countable subbasis. This will prove the claim as the
collection {Vx

i | x ∈ X, i ∈ I} forms a basis of our topology. Let A be any basis
for the topology of X, and denote by U = {U1, U2, . . .} a countable basis of the
topology of X. We first define collections Bi = {B ∈ A | B ⊂ Ui}. Each Bi is
an open cover of the set Ui. Because Ui is a subset of a topological space with
a countable basis it also has a countable basis. Especially Ui has the Lindelöf
property, so there exists a countable subcover B∗i of Bi covering Ui. Now the
collection ∪i∈NB∗i is a countable subbasis of A.

Lemma 2.6. Every manifold is locally compact, i.e. every point has a neigh-
bourhood with compact closure.
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Proof. LetM be a manifold and x0 ∈M. We can pick a chart-neighbourhood
(U,ϕ) of x0 such that

ϕ : (U, x0)→ (B
(
0, 1
)
, 0)

is a homeomorphism. Now the set V := ϕ−1[B
(
0, 1/2

)
] is a neighbourhood of

x0 as ϕ|V : V → B
(
0, 1/2

)
is a homeomorphism. Furthermore,

V = ϕ−1[B
(
0, 1/2

)
] = ϕ−1[B

(
0, 1/2

)
] = ϕ−1[B(0, 1/2)],

so the closure of V is compact as all closed balls of Rn are compact and

ϕ|V : V → B(0, 1/2)

is a homeomorphism.

We say that a topological space X is σ-compact if there exists a sequence
K1,K2, . . . of compact subsets of X such that

⋃
j∈N

Kj = X.

Corollary 2.7. All manifolds are σ-compact.

Proof. This follows by combining lemmas 2.5 and 2.6.

A topological space is said to be paracompact if every open cover admits a
locally finite refinement.

Lemma 2.8. Every manifold is paracompact.

Proof. We have already shown that all manifolds have the Lindelöf property.
Manifolds are also regular as we now show. Let A be a closed subset of our
manifoldM and let x ∈M\A. Let (U,ϕ) be a precompact chart-neighbourhood
of x and pick a ’sub-chart neighbourhood’ V ⊂ U with V ⊂ U . Now we find
disjoint open neighbourhoods Wx and W ′

A for x and V ∩ A, respectively, by
using the fact that Rn is regular. Expanding W ′

A to WA = W ′
A ∪ ∁V we have

the needed neighbourhoods of x and A.
Now a regular Lindelöf space is always paracompact, see for example [Wil04].

Remark 2.9. In some sources the topological N2 property of topology is replaced
by paracompactness in the definition of a manifold. These conditions yield
equivalent definitions for connected manifolds.

2.2 The fundamental group of a manifold

We now define the fundamental group of a topological space and show that the
fundamental group of a manifold cannot be too large. The fundamental group
will serve us as a fundamental building block of our basic concepts.

Let X and Y be topological spaces, and let f, g : X → Y be continuous.
The mappings f and g are said to be homotopic if there exists a mapping
F : [0, 1]×X → Y such that F is continuous, F (0, x) = f(x) and F (1, x) = g(x)
for all x ∈ X. Such map F is called a homotopy from f to g. If we choose
A ⊂ X and B ⊂ Y , we may define the homotopy of pairs by demanding that
for each t ∈ [0, 1] we have a map (x 7→ F (x, t)) : (X,A)→ (Y,B).

8



Let (X,x0) be a topological space with a fixed point. The fundamental
group Π1(X,x0) of this pair is the set of homotopy-equivalence classes of loops
γ : ([0, 1], {0, 1}) → (X,x0). It is given a group structure from the composition
of loops by setting [α][β] = [αβ] for all [α], [β] ∈ Π1(X,x0) and this group
structure is well defined (see for example [Hat02, Propositions 1.2. and 1.3., p.
26]). If X is path connected and x, y are any two points in X, we can define
an isomorphism ψ between the groups Π1(X,x) and Π1(X, y) by picking a path
γ : x y y and setting ψ([α]) = [←−γ αγ]. Thus we can omit the fixed point and
just write Π1(X) when the specific fixed point is not of interest.

We say that two topological spaces X and Y are homotopy-equivalent if
there exists continuous mappings f : X → Y and g : Y → X and homotopies
FX : X × [0, 1] → X and FY : Y × [0, 1] → Y from g−1 ◦ f to idX and from
f−1 ◦g to idY , respectively. Either of the mappings f or g is called a homotopy-
equivalence. A topological space is said to be simply connected if its fundamental
group is trivial, i.e. it consists of a single element. A topological spaceX is called
contractible if there exists a point x0 ∈ X such that the constant mapping
ι : X → {x0} is a homotopy-equivalent to the identity mapping idX .

Lemma 2.10. A contractible topological space is always path-connected and
simply connected.

Proof. Let F : X×[0, 1]→ X be a homotopy between constant mapping ι : X →
{x0} and the identity mapping.

Let y ∈ X. We note that the path γ : [0, 1] → X defined by γ(t) = F (y, t)
connects y to x0. With this we can connect any two points in X.

For any loop γ we note that G : [0, 1] × [0, 1] → X defined by G(s, y) =
F (γ(t), s) is a homotopy that shrinks γ to a point, and thus X is simply con-
nected.

We will need the following result later:

Theorem 2.11. The fundamental group of a manifold is always countable.

The following proof is from [Lee03, Theorem 8.11., p. 189] with some added
explanations and details. The basic idea is represented in figure 1.

Proof. We know by lemma 2.5 that a manifold has a countable cover consisting
of sets homeomorphic to the euclidean unit ball. Let us denote this cover by B.
We see that for any two B,B′ ∈ B the set B ∩B′ is homeomorphic to an open
subset of Rn and thus has at most countably many components. (Note that as
open connected subsets of Rn these components are also path-connected.) We
denote by X the set in which we pick a point from each of the components of
the intersections B ∩ B′, where B,B′ ∈ B. We emphasize that the set X is
countable. For every pair of points xi, xj ∈ X ∩ B for some B ∈ B we pick
a path αi,j : [0, 1] → B connecting the points xi and xj . We call these paths
special paths. There is clearly only a countable number of special paths, so there
is only a countable amount of finite compositions of special paths.

Let us now take an arbitrary path γ : [0, 1] → M. As our result is for the
fundamental group, we shall eventually be interested in loops with a fixed base
point. Because the change of base point does not affect the algebraic structure
of the fundamental group, we may assume for our result that the endpoints of γ
lie in X . We want to show that γ is homotopic to a finite composition of special
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β1

β2
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γ

b1
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α1

α2

α3

α4

γ(0)

γ(1)

Figure 1: Replacing the path γ with a finite composition of special paths.

paths. The pre-images of the open sets in B give an open cover for the compact
set [0, 1], so by choosing a Lebesgue number for this cover we acquire a division

0 = a0 < a1 < · · · < an = 1

of the interval [0, 1] such that γ [ai, ai+1] ⊂ Bi for some Bi ∈ B for all i =
0, . . . , n − 1. We abbreviate γi := γ|[ai,ai+1], and we denote a fixed set B ∈ B
with γ([ai, ai+1]) ⊂ B by Bi. For 0 < i < n the point γi(ai) lies is some
component of Bi−1 ∩ Bi. Denote by bi the element of X in this component
and by βi the path connecting bi and γi(ai) within the component. We also
set β0 and βn+1 to be the constant paths concerning the points γ(0) and γ(1),
respectively. Finally, let us denote by αi the special path connecting bi−1 and
bi. (So with certain enumeration of X we would have αi = αi−1,i in the sense
of previously used notation for special paths.)

Now we see that as the sets B ∈ B are simply connected as homeomor-
phic images of Euclidean balls, we have that each path γi is homotopic to the

composition of paths
←−
βiαiβi+1. Thus

γ = γ0γ1 · · · γn−1 ∼
(←−
β 0α0β1

)(←−
β 1α1β2

)
· · ·
(←−
β nαnβn+1

)
∼ α0α1 · · ·αn

and the path γ is homotopic to a finite composition of special paths.
Now especially in every homopopy class of loops in M there is a represen-

tative that is a finite composition of special paths. Because there is only a
countable number of such compositions, is the fundamental group necessarily
also countable.

2.3 Covering space of a manifold

We next turn our attention to the concept of a (universal) cover of a topological
space. This is a useful concept for we can in a sense ’open up’ a topological
space, or in our case usually a manifold. This enables us later on to talk about
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concepts of volume growth and isoperimetric inequalities that sometimes rely
in their use to the possibility of increasing radius of balls indefinitely without
’running out of space.’ So by opening up a manifold that is too ’small’ into its
universal cover we have better chances of ending up with an object in which
large-scale operations can be implemented. The exposition of universal covers
is loosely based on [Hat02]. All results that are said to follow from the basic
results of algebraic topology can be found from this book.

Definition 2.12. Let X,Y be topological spaces. We call a continuous surjec-
tive mapping f : Y → X a covering map if for any point x ∈ X there exists a
neighbourhood U of x in X so that p−1[U ] is a disjoint union of open sets Vi
for which p|Vi

: Vi → U is a homeomorphism for any i ∈ I. We shall call such
a neighbourhood U a covering neighbourhood (of the point x). It is quite clear
that any point has a neighbourhood basis consisting of covering neighbourhoods.

Let X be a connected topological space. We say that a pair (Y, p) is a
covering space of X if Y is a connected topological space and p : Y → X is a
covering map.

Y1

p1

f

Y2

p2

X

Figure 2: Ordering covers

We say that a covering space (Y1, p1) of a topo-
logical space X is universal, if for any other cov-
ering space (Y2, p2) of X we have a covering map
f : Y1 → Y2 such that (Y1, f) is a covering space
of Y2 and p1 = p2 ◦ f . By basic results of homo-
topy theory a cover is universal if and only if it is
simply connected and the universal cover of a topo-
logical space, when it exists, is essentially unique.
We shall not prove the following basic theorem con-
cerning the existence of universal covering spaces;
the proof can be found e.g. in [Hat02, p. 64]. To
state the result we define a topological space X to
be semilocally simply connected if every point x ∈ X has a neighbourhood U
such that the mapping f : Π1(U, x)→ Π1(X,x) induced by the inclusion U →֒ X
is trivial.

Lemma 2.13. Let X be a topological space that is path connected, locally path
connected and semilocally simply connected.

Then X has a universal cover.

We shall show that every manifold has an universal cover. We do, however,
separate part of the proof as a lemma since we need it later in a slightly different
context.

Lemma 2.14. Let M be a connected topological space that is locally path con-
nected. ThenM is path connected.

Proof. We shall call the path connected open sets of M chart-neighbourhoods
as they imitate chart-neighbourhoods of manifolds. We say that two points
x1 and x2 are chart-connected if there exists a finite sequence U1, . . . , Uk of
chart-neighbourhoods of M such that Ui ∩ Ui+1 6= ∅ for all i, and x1 ∈ U1,
x2 ∈ Uk.

Let x0 ∈M. We wish to show that the set

A = {x ∈M | The point x is chart-connected to the point x0}

11



is the whole of M because elements within A are easy to connect with paths
lying in in A. We do this by showing that the set A is both open and closed
because a nonempty (clearly x0 ∈ A) subset of a connected space that is both
open and closed has to be the whole space.

Assume x ∈ ∂A and let V be a chart neighbourhood of x. As V ∩A 6= ∅, we
can pick a point y ∈ V ∩ A and connect x0 to y with charts U1, . . . , Uk. Now
the sequence U1, . . . , Uk, V is a chart-connection of x0 to x. On the other hand
also V ∩∁A 6= ∅, so we can pick z ∈ V ∩∁A. But not the sequence U1, . . . , Uk, V
connects x0 to z, so z ∈ A. This is a contradiction, so we must have ∂A = ∅.
Thus A is both open and closed.

This means, as mentioned, thatM = A. Moreover, any two points a, b ∈M
can be chart-connected by first connecting a to x0 and then x0 to b because
chart-connectivity is a transitive relation.

Now let x and y be arbitrary points in M. Let us take a finite chain of
chart neighbourhoods U1, . . . , Uk connecting these two points and pick points
xi ∈ Ui ∩Ui+1. As the chart-neighbourhoods were assumed path connected, we
find paths connecting each xi to xi+1 in Ui+1 and two paths connecting x to x1
and xk−1 to x ∈ U1 and y ∈ Uk, respectively. Composing these paths gives us
a path connecting x and y within the set

⋃
i Ui ⊂M.

Theorem 2.15. Every connected topological manifold has a universal cover.

Proof. We shall use lemma 2.13. LetM be a connected manifold. To see that
M is locally path connected let x ∈M. AsM is a manifold, there exists a chart
neighbourhood U of x homeomorphic to Rn via a homeomorphism f : U → Rn.
Now if we pick any two points a and b from this neighbourhood, there exists a
path α in Rn connecting the points f(a) and f(b). The path f−1 ◦ α connects
the points a and b in U . Thus the manifoldM is locally path connected. Now
M is path connected by lemma 2.14.

To show that M is semilocally simply connected1 we again let x ∈ M and
we pick a chart neighbourhood U of x homeomorphic to Rn. The space Rn

is simply connected, so Π1(U) ≃ Π1(Rn) = 0. Thus the inclusion-induced
mapping is trivially trivial andM is thus semilocally simply connected.

So by our lemma 2.13 any manifold has a universal cover.

Now we shall look at some of the basic lifting properties of covering spaces.
We will not give the proofs to these fundamental results, but they can be found
from any basic book concerning homotopy theory, for example from [Hat02].
These theorems are stated for general covers and topological spaces, but in
practice we will use them mostly for the universal cover of a manifold. We
denote by (M̃, pM̃) the universal cover of a manifoldM and reserve the notation

(M̂, pM̂) for general cover ofM.

Definition 2.16. Let f be a map f : X → N , where N is a connected topo-
logical space, and (N̂ , pN̂ ) its cover. A lift of f is a map f̃ : X → N̂ such that

pN̂ ◦ f̃ = f . (See figure 2.3.)

The lift of a function f is denoted f̃ .

1We actually show a stronger result that says M is actually locally simply connected.
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Example 2.17. Let us take a path f : [0, 1] → S1, f(t) = e4πit. This path
circles the unit circle twice, beginning from the point (0, 1). The universal cover
of the circle S1 is R with the mapping p(x) = e2πit as a covering map. In this

case the lifts for f would be maps f̃n : [0, 1]→ R, f̃n(t) = n+ 2t.
More generally maps of the form f(t) = e2πig(t), where g : [0, 1] → R is

continuous, have lifts f̃n : [0, 1]→ R, f̃n(t) = n+ g(t).

Definition 2.18. Let f :M→N be a function between two topological spaces
with covers (M̂, pM̂) and (N̂ , pN̂ ). We say that a double lift of f is a map
≈
f : M̂ → N̂ such that pN̂ ◦

≈
f = f ◦ pM̂, i.e. it is a lift of the mapping f ◦ pM̂.

(See figure 2.3.)

The double lift of a function f is denoted
≈
f and as it is also a lift, the following

theorems for lifts work also for the double lift with the right interpretation.

N̂

pN

X
f

f̃

N

M̂

pM

≈

f

N̂

pN

M
f

N

Figure 3: A lift and a double lift of a function.

We only state the following basic theorem called the lifting criterion. The
proof can be found at [Hat02, Proposition 1.33., p. 61].

Theorem 2.19. Let (M, x0) be a topological space,
(
(M̂, x̂0), pM̂

)
its covering

space and f : (Y, y0)→ (M, x0) a continuous map from a path connected, locally

path connected topological space Y . There exists a lift f̃ of f if and only if

f∗ [Π1 (Y, y0)] ⊂ (pM)∗

[
Π1

(
M̂, x̂0

)]
.

This instantly gives us two corollaries, which shall be the only form of this
theorem that we need. We omit the proofs as these results follow immediately
from the lifting criterion.

Corollary 2.20. Mappings from a simply connected, path connected and locally
path connected domain always have a lift. Especially mappings from a simply
connected manifold always have a lift to any cover.

Corollary 2.21. LetM be a manifold. Paths γ : [0, 1]→M always have a lift

γ̃ : [0, 1]→ M̂.

We will also need the following uniqueness of lifts. Proof can be found for
example from [Hat02, Proposition 1.34., p.62].

Theorem 2.22. If two lifts of a continuous function agree on one point of the
domain and if the domain is connected, then the lifts agree on all of the domain.

13



The following result is called the the homotopy lifting property, but we shall
only need one of its corollaries later. Proof can be found for example from
[Hat02, Proposition 1.30., p.60].

Theorem 2.23. Suppose we have a covering space (M̂, pM̂) of a topological

space M, a homotopy F : [0, 1] × Y → M and a map f̃0 : Y → M̂ lifting f0.

Then there exists a unique homotopy f̃t : Y → M̂ of F̃ that lifts F .

Corollary 2.24. Two loops with the same base point inM are non-homotopic
if their lifts with respect to some cover with the same starting point have different
endpoints.

Corollary 2.25. Two loops with the same base point in M are homotopic if
and only if their lifts to the universal cover with the same starting point have a
common endpoint.

We need next to construct a manifold structure on M̂.

Theorem 2.26. Let M be a manifold. Then the any of its covers is also a
manifold.

Proof. We need to show three things: every point in M̂ has a neighbourhood
homeomorphic to an open subset of Rn, the topology of M̂ has the Hausdorff
property and the topology of M̂ has a countable basis.

We first construct a neighbourhood homeomorphic to a domain of Rn for
an arbitrary point in M̂. The basic idea of the process is shown in picture 4.
Let x ∈ M̂. We note that p(x) is a point in M, so it has a neighbourhood U
homeomorphic to an open subset of Rn via a map f . But by the definition of a
covering space, the point p(x) has also a covering neighbourhood V such that
p−1[V ] consists of disjoint open sets, each homeomorphic to V via the restriction
of p. From these open sets we choose the unique one containing x and call it
W . Now V ∩ U ⊂M is nonempty and homeomorphic to an open subset of Rn

via the restriction of f to this intersection. On the other hand the set V ∩ U is
homeomorphic to the set

(
(p|W )

−1 |V ∩U

)
[V ∩ U ] ⊂ M̂,

which is a neighbourhood of x as an image of an open set under a homeomor-
phism. Thus the point x has a neighbourhood homeomorphic to an open subset
of Rn.

To show that the topology of the covering space has the Hausdorff property,
let x1, x2 ∈ M̂, x1 6= x2. Let us study this in two cases.

Let us first assume that p(x1) 6= p(x2). The points p(x1) and p(x2) lie in
the manifoldM which is a Hausdorff space. Thus there exists neighbourhoods
U1 and U2 of these points such that U1 ∩ U2 = ∅. We now claim that the
neighbourhoods p−1 [Ui] of x1 and x2 are disjoint. This follows quickly, as if
there were a point

y ∈ p−1U1 ∩ p−1U2,

then p(y) would belong to both U1 and U2. This is impossible as these sets were
chosen disjoint. Thus in the first case we find disjoint neighbourhoods for the
points x1 and x2.
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V

U

W

p−1
MV

p−1
MU

pM

f

f [U ]

M̃

M

Rn

Figure 4: Constructing a chart neighbourhood in M̂.

Let us now assume that p(x1) = p(x2). By the definition of a covering space,
the point p(x1) has a covering neighbourhood V such that p−1V is a disjoint
collection of open sets Vi each homeomorphic to V . The points x1 and x2 cannot
lie in a same component of p−1V , because p|Vi

: Vi → V is as a homeomorphism
especially an injection for all i. By picking the two unique open sets containing
x1 and x2, we find the needed disjoint neighbourhoods.

Showing that the topology of a cover of a manifold has a countable base is a
bit nontrivial. To appreciate this aspect one may spend time thinking why the
Alexandroff long line is not a covering space for R or S1. What we shall first
show is that for any2 x0 ∈M the set p−1{x0} is countable.

Assume the opposite; there exists x0 ∈ M such that the pre-image of this

2Actually it is a basic result of covering spaces that the sets p
−1{x} have the same cardi-

nality for all x ∈ M, so it would suffice to show the result for just one fixed point. The proof
would be essentially the same.
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point under the covering map p is uncountable. The cover M̂ is locally home-
omorphic to Rn so it is especially locally path connected. This means that M̂
meets the assumptions of lemma 2.14 and is path connected. So if we pick
one point, say y0 ∈ p−1{x0}, we may now construct paths γα connecting y0 to
each element of the set p−1{x0}. These paths give us uncountably many loops
p◦γα inM, all with the same starting point x0 and mutually non-homotopic by
application of corollary 2.24. This, on the other hand is in contradiction with
theorem 2.11. Thus we must have that p−1{x0} is countable.

We now wish to construct a countable basis for the topology of M̂. Note,
that for every point x ∈ M the covering neighbourhoods V form a neighbour-
hood basis of x so by theorem 2.5 there exists a countable basis for the topology
ofM consisting of covering neighbourhoods. Call this basis A. We set

B =
{
U ⊂ M̂ | U is a component of p−1V for some V ∈ A

}

and show that B is the wanted basis. The set B is countable by our previous
argument.

Let W ⊂ M̂ be a connected neighbourhood of a point y ∈ M̂. It suffices
to find B ∈ B such that y ∈ B ⊂ W to prove the claim. We note that by
definition of a covering space there exists a neighbourhood V of p(y) inM such
that there is a component V0 of p−1[V ] containing y such that p|V0

: V0 → V is a
homeomorphism. The restriction p|W∩V0

: W ∩ V0 → p [W ∩ V0] is still a home-
omorphism and the set p[W ∩ V0] a covering neighbourhood. Now p [W ∩ V0]
contains an element A ∈ A with p(y) ∈ A. Calling this component B, we see
that B ∈ B and y ∈ B ⊂W . This proves the claim.
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3 Growth rate

We now begin to define the growth rate of a metric space. This will be our invari-
ant with which we will be able to deduce non-existence of BLD mapping between
manifolds in certain cases. We begin by looking at coarse quasi-isometries which
are the moral isomorphisms in the category of coarse geometry.

3.1 Coarse quasi-isometries

We begin by studying coarse quasi-isometries which are the fundamental tool
of coarse methods. Coarse quasi-isometries are a quite natural generalization of
isometries and have a very concrete definition. However the small change in the
definition gives us much more flexibility and makes the coarse quasi-isometry
an essential tool in the studies of growth rate and other co-local properties of
metric spaces. Two of the most important properties for coarse quasi-isometries
for us are that firstly, they will actually preserve growth rate as well as it can be
reasonably preserved and secondly, their existence gives an equivalence relation
between metric spaces.

A subset A of a metric space X is said to be full in X if there exists a
constant ε ≥ 0 such that

B
(
A, ε

)
:= {x ∈ X | inf{d(x, a) | a ∈ A} ≤ ε} = X.

If we want to emphasize the constant ε, we can use the term ε-full.

Definition 3.1. Let (X, dX) and (Y, dY ) be metric spaces. We call a mapping
f : X → Y a coarse quasi-isometry if the following two conditions hold.

(Q1) There exists a constants C > 0 and D ≥ 0 such that

C−1dX(x, y)−D ≤ dY (f(x), f(y)) ≤ CdX(x, y) +D

holds for all pairs of points in X.

(Q2) The image of f is full in Y .

Two spaces are called coarsely quasi-isometric if there exists a coarse quasi-
isometry between them.

Note that a coarse quasi-isometry need not be continuous. An intuitive ap-
proach would be to think that two spaces are coarsely quasi-isometric if they
look similar ’when looked from far away’ or on large scales. The relation be-
tween metric spaces of being coarsely quasi-isometric is however an equivalence
relation. Especially if f : X → Y is a coarse quasi-isometry such that Im(f) is
ε-full in Y , we can define g : Y → X by picking for each for each y ∈ Y a point
x ∈ X such that d(y, f(x)) ≤ ε, and setting g(y) = x. We call this mapping
g a coarse inverse of f and shall often abuse notation and denote in this sit-
uation f−1 := g, even though it is rare that we should have f ◦ f−1 = idY or
f−1 ◦ f = idX , and the coarse inverse f−1 is unique only in the rarest of cases.

The following lemmas will be used throughout the rest of this thesis.

Lemma 3.2. Let A be a subset of a metric space X. The inclusion mapping
A →֒ X is a coarse quasi-isometry if and only if the set A is full in X.
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Proof. Requirement (Q1) follows as in the induced metric the inclusion is an
isometry. The image is full exactly when the set A is, so the inclusion is a coarse
quasi-isometry exactly in this case.

Lemma 3.3. Let X,X ′, Y and Y ′ be metric spaces with f : X → X ′ and g : Y →
Y ′ as coarse quasi-isometries. Then the spaces X ×Y and X ′×Y ′ are coarsely
quasi-isometric when equipped with the product metric defined by

dA×B ((x, y), (z, w)) := dA(x, z) + dB(y, w).

Proof. The claim follows immediately by writing out the conditions for coarse
quasi-isometry for the mapping

h := f × g, h(x, y) = (f(x), g(y)).

Let (x, y), (a, b) ∈ X × Y . We note that

dX′×Y ′ (h(x, y), h(a, b)) = dX′×Y ′ ((f(x), g(y)), (f(a), g(b)))

= dX′(f(x), f(a)) + dY ′(g(y), g(b))

≤ CfdX(x, a) +Df + CgdY (y, b) +Dg

≤ CdX×Y ((x, y), (a, b)) +D,

where C = max(Cf , Cg) and D = Df +Dg.
In a similar fashion we can see that

dX′×Y ′ (h(x, y), h(a, b)) ≥ C−1dX×Y ((x, y), (a, b))−D,

where again C = max(Cf , Cg) and D = Df +Dg.
Now let us assume that Im(f) is εf -full in Y and Im(g) is εg-full in Y

′. We
note that Im(h) = Im(f)× Im(g), so if we take any point (x, y) ∈ X ′ × Y ′, we
see that

dX′×Y ′((x, y), Im(h)) = dX′(x, Im(f)) + dY ′(y, Im(g)) ≤ εf + εg.

Thus the image of h is (εf + εg)-full in X
′ × Y ′.

Example 3.4. 1. The inclusion Z →֒ R is a coarse quasi-isometry by lemma
3.2.

2. The inclusion Q2 →֒ R2 is a coarse quasi-isometry by lemma 3.2.

3. Any two bounded non-empty metric spaces are coarsely quasi-isometric.
This can be seen by taking any constant map f : X → Y and picking the
additive constants large enough:

d(x, y)− d(X) ≤ d(f(x), f(y)) ≤ d(x, y).

This satisfies the (Q1)-condition because d(f(x), f(y)) is always zero, and
for all x, y ∈ X we have that d(x, y) ∈ [0, d(X)]. The condition (Q2) is
satisfied as the set f [X] is d(Y )-full in Y .
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4. If X and Y are coarsely quasi-isometric, then X = ∅ if and only if Y = ∅.
This can be seen by the fact that the image of an empty set can be ε-full
only in an empty set, and that there exists no mappings from a nonempty
set to the empty set.

5. The inclusion N →֒ R is not a coarse quasi-isometry because the image of
the set N is not ε-dense in R. This can be seen by noting that for any
ε ∈ R+ we have that −ε− 1 /∈ B

(
N, ε

)
.

6. The mapping N→ R, n 7→ (−1)nn is not a coarse quasi-isometry because
the distance between the images (−1)nn and (−1)n+1(n+ 1) of two con-
secutive points is not bounded from above when n grows. The image is
full however as it consists of all the positive odd integers and all negative
even integers, so the image is 2-full.

Actually the metric spaces N and R are not coarsely quasi-isometric. We
will prove this in remark 3.41.

7. Let X and Y be nonempty metric spaces with Y is bounded. For any
fixed y0 ∈ Y the natural injection.

ι : X → X × Y, ι(x) = (x, y0)

is a coarse quasi-isometry

This can be seen quite easily, as the mapping ι is an isometry, and we
have that B

(
Im(ι), d(Y ) + 1

)
= X × Y .

3.2 Growth rate of a metric space

We next turn to the concept of growth of a metric space. In the continuous
setting we have no natural concept of volume on a manifold like we do in a
Riemannian case. We work around this constraint in essence by approximating
our manifolds with sufficiently discrete subsets called nets. For these subsets the
growth rate, which represents in some sense a discretization of the Riemannian
volume, can be calculated from the amount of points in a ball around a fixed
point when the radius is increased. We will also give conditions for metric spaces
under which we do not need to concern ourselves about the specific choice of an
approximating net in any essential manner.

First we need to define the set of all possible growth rates. Let

F = {f : R+ → N ∪ {∞} | f is monotone non-decreasing }

and define a reflexive transitive relation to this set by setting for f, g ∈ F that
f ≤ g, if there exists non-negative constants C,D and r0 such that

f(r) ≤ Cg(Dr)

whenever r ≥ r0. We define an equivalence relation to this set by setting f ∼ g
if f ≤ g and g ≤ f , or equivalently, if there exists constants C,D and r0 such
that

C−1g(D−1r) ≤ f(r) ≤ Cg(Dr)
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whenever r ≥ r0. The equivalence classes of of mappings under this relation are
called growth rates and we denote the equivalence class of a function f ∈ F by
O(f). Finally we denote by GR the set of equivalence classes

F
/
∼ = {O(F ) | f ∈ F}.

We now show that the relation ≤ in F induces a well defined ordering to GR.
The proof is quite straightforward as we defined this quotient such that elements
within an equivalence classes cannot be distinguished by the ordering.

Lemma 3.5. The relation ≤ in F induces a well defined (partial) ordering to
GR.
Proof. Let O(f),O(g) ∈ GR and f ′ ∈ O(f), g′ ∈ O(g). We wish to show that
f ≤ g if and only if f ′ ≤ g′. Assuming f ≤ g, there exists constants C1, D1

and r10 such that f(r) ≤ C1g(D1r) for all r ≥ r10. But because g ∼ g′, we have
constants C2, D2 and r20 such that g(r) ≤ C2g

′(D2r) for all r ≥ r20. This implies
that

C1g(D1r) ≤ C1C2g
′(D1D2r)

for all r ≥ r20
D2

. As we assumed that f ∼ f ′, we especially have constants C3, D3

and r30 such that f ′(r) ≤ C3f(D3r) for all r ≥ r30.
Combining all of the above and denoting C = C1C2C3, D3 = D1D2D3 and

r0 = max
{
r10,

r20
D2
,
r30
D3

}
we have that f ′(r) ≤ Cg′(D) for all r ≥ r0. By the

symmetry of the argument we see that the ordering relation is well defined.
Now as the original relation ≤ in F was reflexive and transitive, so is the

induced relation in GR. Furthermore the definition of the elements of GR
guarantees that if O(f) ≤ O(g) and O(g) ≤ O(f), then O(f) = O(g). Thus we
have a natural ordering in GR.

The main theorems of this thesis will give invariants based to comparing
growth rates of certain manifolds. We now give some vocabulary on certain
usual types of growth rates. The growth rate of a function f (or of a metric
space) is said to be polynomial, if there exists n ∈ N such that

O(f) ≤ O(x 7→ xn) =: O(xn).

Growth rate of a polynomial order of 1 is called linear growth. If a growth
rate is not of polynomial order, we say that it is of superpolynomial order. If
O(f) = O(x 7→ ex), we say that the growth rate is of exponential order and if
the growth greater than exponential order we say that it is of super-exponential
order.

3.2.1 Growth rate of nets

We will define the growth rate of an arbitrary metric space by approximating the
metric space in question with a sufficiently discrete subset defined as follows.
A metric space X is ε-separated, if for all x, y ∈ X we have either x = y or
d(x, y) > ε. Recall that a subset A of a metric space X is called ε-full, if
B(A, ε) = X. (If we do not need to fix the constant ε we will just call sets full
if the ε-fullness criterion is satisfied for some ε ≥ 0.)
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Definition 3.6. An ε-net of a metric space X is an ε-separated 2ε-full subset
of X. If we call some set ’just’ an ε-net without specifying a superset, the set
is assumed to be an ε-net of itself, that is, an ε-separated metric space.

Nets can always be found as the following lemma shows.

Lemma 3.7. There exists an ε-full ε-net in any metric space X.

Proof. Let X be a metric space and let ε > 0. We define A to be the collection
of all ε-separated subsets of X. We define a partial order in A by setting A < B
if A ⊂ B.

Let us assume that B is a linearly ordered subset of A. We claim that
B0 = ∪B is an upper bound for B. We have B0 > A for all A ∈ B as for all
A ∈ B we clearly have that A ⊂ ∪B = B0. Thus we only need to check that
d(x, y) ≥ ε for all disjoint pairs of points x, y ∈ B0. But if x, y ∈ B0 = ∪B
are disjoint, there must exist sets Ax, Ay ∈ B containing the points x and y,
respectively. The union defining B0 is over a monotone collection of sets, so there
must exist a set Axy ∈ B containing both these points, and thus d(x, y) ≥ ε.

Now by Zorn’s lemma there exists a maximal element N of the collection
A. we next show that this is an ε-net of X. We need only to check that
B
(
N, ε

)
= X. But this is easy as if we had a point x ∈ X with d(x,N) > ε, we

could add this point to our net N . But that would be a contradiction with the
maximality of N , so the claim holds.

For ε-nets the growth rate can easily be defined in a unique way.

Definition 3.8. The growth function of an ε-net S with fixed point x0 ∈ S is
defined to be the mapping

Γx0

S : R+ → N ∪ {∞}, Γx0

S (r) = ♯BS

(
x0, r

)
.

The growth rate of an ε-net (S, x0) is the equivalence class

Ord(S, x0) := O (Γx0

S ) ∈ GR.

Note that any bi-Lipschitz change of metric does not affect the asymptotic
behaviour of the growth function of a net.

The following theorem tells us that we can actually omit the fixed point and
talk just about the growth of the net.

Theorem 3.9. The growth rate of a net does not depend on the chosen base
point, that is, Ord(S, x0) = Ord(S, y0) for all x0, y0 ∈ S.

Proof. Let x0, y0 ∈ X be two base points. For any n ∈ N

B
(
x0, n

)
⊂ B

(
y0, n+ d(x0, y0)

)
and B

(
y0, n

)
⊂ B

(
x0, n+ d(x0, y0)

)
,

so we have for all n ≥ d(x0, y0) that

B
(
x0, n

)
⊂ B

(
y0, n+ d(x0, y0)

)
⊂ B

(
y0, n+ n

)
= B

(
y0, 2n

)
.

Similarly,

B
(
y0, n

)
⊂ B

(
x0, n+ d(x0, y0)

)
⊂ B

(
x0, n+ n

)
= B

(
x0, 2n

)
.
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This means that we may actually choose C = 1, D = 2 and n0 = d(x0, y0) to
get

Γx0

X (
n

2
) ≤ Γy0

X (n) ≤ Γx0

X (2n)

for all n ≥ d(x0, y0) and thus the growth rate of a net does not depend on the
chosen base point.

We denote by Ord(S) the equivalence class of the growth function of a net
S. This notation is well defined by the previous theorem.

3.2.2 Growth class of a metric space

We now turn to the definition of a growth rate of an arbitrary metric space. We
would like to define that the growth rate of a metric space X is the growth rate
of any ε-net of X. This cannot be done because there exists metric spaces for
which the choice of a different ε-net (even without changing the parameter ε)
yield strictly different growth rate as we see in example 3.10.

Example 3.10. Let us denote by B the unit ball of the Banach space ℓ∞.
Denote by X1 the space B × Z. We note that as a product of a metric space
with a bounded metric space, the space X1 is coarsely quasi-isometric to Z. But
if we look at any ε-net S with ε ≤ 1

4 , we note that ΓS(r) = ∞ for any r ≥ 1.
Thus X1 is a metric space that looks like Z in the coarse sense, but has an
infinite growth rate.

For a more sophisticated example, let f : N → N be any monotone non-
decreasing function. Pick δ ∈ ]0, 14 [ We modify the space X1 by changing each
copy of the infinite-dimensional unit ball B at the point k ∈ Z to a cube Bk as
follows. For k < 0 we take Bk =

∏
j∈N

[−δ, δ]. For k ≥ 0 we take

Bk = ℓ∞ ∩






f(k+1)−f(k)∏

j=0

[−2δ, 2δ]


×




∞∏

f(k+1)−f(k)

[−δ, δ]




 .

call the result X2. Now if we pick an ε-net v with ε = 3δ, we see that Ord(V ) =
O(f). So we have that this metric space is still coarsely quasi-isometric to Z,
but has the growth rate [f ].

Do note that if we pick an ε-net from either X1 or X2 with ε ≥ 2 we always
get a net with the growth rate of Z. (This can be deduced directly, but this is
also a corollary of theorem 3.19 in some sense.)

What happens in the previous example is a ’bad’ thing. We would like our
growth rate to mimic the Riemannian concept of volume and be preserved under
coarse quasi-isometries. Because the volume growth of R is linear, we would like
the metric space of integers to have linear growth rate as it is coarsely quasi-
isometric to the metric space of real numbers. But in the example both of the
metric spaces had nets with infinite or arbitrary growth rates even though the
metric spaces themselves are coarsely quasi-isometric to Z.

We will need the definition of growth rate to be such that it is preserved
as strongly as possible under coarse quasi-isometries. Our hopes rise when we
note that in the previous example we can get ε-nets to the metric space that
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resemble Z if we just make ε large enough. We should hope that under some
criteria the same would always happen, meaning that we would always find the
small ’real’ growth rate of our metric space by taking nets sparse enough. In
this we will succeed and the concrete result and condition for this to happen
will be given definition 3.16 and theorem 3.18.

We continue now by defining the concept of growth rate for general metric
spaces.

Definition 3.11. Let X be a metric space. Denote by S(X) the set of all nets
in X. The growth class X is defined to be

Ord∗(X) = {O(ΓS) | S ∈ S(X)} ⊂ GR.

Note that any bi-Lipschitz change of the metric does not affect Ord∗(X).
The set Ord∗(X) can be large, even infinite. We would need in the coming
results ways to find lower bounds to this set, the best possible situation being
that where we have a minimal element in this set as seems to happen in the case
of example 3.10. We will in theorem 3.18 show that a certain metric condition
guarantees a minimal element in the growth class. Before that we prove a few
auxiliary results about the ordering structure of Ord∗(X).

Lemma 3.12. Let A be an ε-full subset of a metric space X. Then every ε-full
ε-net S of A is an ε-net in X.

Proof. By lemma 3.7 we can find nets with arbitrary net-constant ε from any
metric space, and such that the resulting net is ε-full. Let us now take some
ε-net from the set A with this property and call it V . To show that the set V
is net in X we need to show that it is ε-full in X. Take x ∈ X. As the set A
was assumed ε-full in X we have a point a ∈ A such that d(a, x) < ε. Now as V
was an ε-net in A we have v ∈ V such that d(v, a) < ε. By triangle inequality
we now have

d(x, v) ≤ d(x, a) + d(a, v) < ε+ ε = 2ε.

This proves the claim.

Remark 3.13. Note that the previous theorem gives us ε-nets contained in full
subsets with arbitrary large ε.

Theorem 3.14. Let V be an ε-net in a metric space X. For any kε-net P in
X with k ≥ 4 we have that Ord(P ) ≤ Ord(V ).

Proof. Let V be an ε-net in X and P and kε-net in X with k ≥ 4. Fix points
v0 ∈ V and p0 ∈ P .

As V is an ε-net in X we have d(p, V ) < 2ε for all points p ∈ P . This means
that for each p ∈ P we can pick a point v from V with d(p, v) < 2ε. Denote by
f the mapping P → V thus defined. We note that as P was assumed an kε-net,
we have for any disjoint x and y in V that d(x, y) ≥ kε. Also by definition of f
we have that d(f(x), x) < 2ε for all x ∈ P . Now by triangle inequality we have
that for any x, y ∈ P , x 6= y

d(x, y) ≤ d(x, f(x)) + d(f(x), f(y)) + d(f(y), y) < 2ε+ 2ε+ d(f(x), f(y)).
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So

d(f(x), f(y)) > d(x, y)− 4ε ≥ kε− 4ε ≥ 4ε− 4ε ≥ 0.

Thus the mapping f is injective and it maps the the set B
(
x, r
)
∩ P into the

set B
(
f(x), r + 2ε + d(v0, p0)

)
∩ V by similar calculation as above. Denoting

BA

(
x, r
)
:= A ∩ B

(
x, r
)
we now have

Γp0

P (r) = ♯BP

(
p0, r

)
≤ ♯BV

(
v0, r + 2ε+ d(v0, p0)

)
= Γv0

V (r + 2ε+ d(v0, p0)).

Thus by choosing r0 = 2ε + d(v0, p0) we have Γp0

P (r) ≤ Γv0

V (2r) for all r ≥ r0
and this proves the claim.

Theorem 3.15. Let P and S be nets in a metric space X. Then there exists a
net V in X with Ord(V ) ≤ Ord(P ) and Ord(V ) ≤ Ord(S).

Proof. The claim follows from the previous theorem by picking any ε-net V in
X with ε ≥ 4(εP + εS), where εP and εS are the net-constants of P and S,
respectively.

Definition 3.16. A metric space X is called weakly doubling if the following
condition is satisfied. For every pair of radii R and r there exists a constant
K := K(R, r) such that any ball with radius R can contain at most K disjoint
balls with radius r.

Remark 3.17. Note that a metric space is weakly doubling exactly when for any
two radii R and r we have a global upper bound to the number of elements of
an r-net in any ball with radius R.

Theorem 3.18. A weakly doubling metric space has a unique growth rate i.e.
all of its nets have equivalent growth rates.

Proof. Suppose first that the space X is a bounded weakly doubling metric
space. Now taking any ε-net N of X and apply the definition of a weakly
bounded metric space to the radii d(X) + 1 and ε we see that the net N has
to be finite. Thus the growth function of any net in X is bounded from above
and thus equivalent to the constant function r 7→ 1 and the claim holds. This
means that we can assume the metric space in question to be unbounded.

Let X be an unbounded weakly doubling metric space, and P and S its
nets with net-constants εP and εS , respectively. By theorem 3.15 we now that
there exists a εV -net V in X with Ord(V ) ≤ Ord(S), Ord(V ) ≤ Ord(S) and
εV ≥ 4max(εS , εP ). We can even assume V to have a common point with both
P and S by constructing V as the maximal εV separated subset of X containing
certain fixed points p ∈ P and s ∈ S with d(p, s) ≥ εV (such points p and s can
be found as the nets are full in the unbounded metric space X). To prove the
claim it will be enough to show that Ord(V ) ≥ Ord(S) and Ord(V ) ≥ Ord(P ).
The claim is symmetric with respect to these nets so we will just show that
Ord(V ) ≥ Ord(S).

We take a base point x0 ∈ S ∩ V . As X is weakly doubling, there exists a
constant K such that there can be at most K disjoint balls with radius εS in
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a ball with radius εV . This especially tells us that for any x ∈ X we have that
♯
(
B
(
x, εV

)
∩ S
)
≤ K. Thus

Γx0

S (r) ≤
∑

x∈BV

(
x0,r+εS

) ♯
(
B
(
x, εV

)
∩ S
)
≤ K · Γx0

V (r + εS),

and so Γx0

S (r) ≤ KΓx0

V (2r) whenever r ≥ εS .

Theorem 3.19. Suppose a metric space X has a net S that is weakly doubling
as a metric space. Then Ord(S) is the minimal element of GR(X).

Proof. Assume there exists a weakly doubling net S in X. If we take any net
P of X, we have by theorem 3.15 a net V in X with Ord(V ) ≤ Ord(S) and
Ord(V ) ≤ Ord(P ). But by theorem 3.14 we can pick from S a subnet S′ such
that Ord(S′) ≤ Ord(V ). But as S′ is a net of S, we have by theorem 3.18 that
Ord(S) = Ord(S′), and so Ord(S) = Ord(V ) ≤ Ord(P ).

Corollary 3.20. Suppose a metric space X contains a full weakly doubling
subset. Then there exists a minimal element in Ord∗(X).

From now on if X is a metric space that has a minimal element in its growth
class we will denote Ord(X) := minOrd∗(X).

Corollary 3.21. Every bounded metric space has the growth rate O(x 7→ 0).

Proof. This follows immediately as we pick a growth net containing only a single
point.

We now look at how to get estimates for, or even calculate, the growth rate
of a product of metric spaces.

Theorem 3.22. Let X and Y be two metric spaces. For any nets S ⊂ X,
P ⊂ Y the set S×P contains a net V in X×Y such that Ord(V ) ≤ O(ΓS ·ΓP ).

Proof. For our uses the most natural product metric will be

dX×Y ((x, y), (x
′, y′)) := max(dX(x, x′), dY (y, y

′)).

It is bi-Lipschitz equivalent to the more standard metric given by sums, so claims
are equivalent for these different metrics. With this metric we note that if the
net constants of S and P are εS and εP , respectively, then S×P is min(εS , εP )-
separated and max(2εS , 2εP )-full in X × Y . As it is full, it especially contains
a net V that is a net also in X × Y .

Fix a point (x0, y0) ∈ V . We note that the amount of points of V in any
ball must be less than the amount of points of S × P in the same ball. On the
other hand

(B
(
(x0, y0), r

)
∩ S × P ) = (B

(
x0, r

)
∩ S) · (B

(
y0,∩P

)
).

Combining these we see that

Γ
(x0,y0)
V (r) ≤ Γ

(x0,y0)
S×P (r) = Γx0

S · Γy0

P (r)

and this proves the claim.
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Corollary 3.23. Let X and Y be metric spaces.

(1.) If there exists weakly doubling nets in X and Y , the product of these is
weakly doubling full subset of X×Y , and Ord(X×Y ) = Ord(X)×Ord(Y ).

(2.) If X and Y are weakly doubling, then so is X × Y , and Ord(X × Y ) =
Ord(X)×Ord(Y ).

Proof. To prove these claims it will suffice show that the product of two weakly
doubling metric spaces is weakly doubling. But this follows easily when we use
the same metric as in the proof of the previous theorem as in this metric balls
of the product space are always products of balls of the factors. So the claim
holds true.

Corollary 3.24. Let X and Y be metric spaces. If Y is bounded, then

Ord∗(X × Y ) = OrdX .

Theorem 3.25. The euclidean space Rn is weakly doubling and Ord(Rn) =
O(xn).

Proof. Note that all balls in Euclidean space are measurable in the sense of
Lebesgue. Furthermore every ball has a finite measure, and as the Lebesgue
measure is translation invariant the measure depends only on the radius. As
the space Rn is separable, any collection of disjoint open sets must be countable.
Especially if we have a collection B of disjoint balls with radius r within a ball
of radius R in Rn it has to be countable collection. Denote by Cr the measure
of a ball with radius r > 0. Now

CR = m(B
(
x0, R

)
) ≥ m

( ⋃

B∈B

B

)
=
∑

B∈B

m(B) =
∑

B∈B

Cr = Cr · ♯B,

so we must have

♯B ≤ CR

Cr

:= K <∞.

This proves the claim.

3.2.3 Metric structure and growth rate of groups

Compact manifolds with path-length structure will be the most concrete exam-
ples of the objects for which we will formulate our results. Such manifolds, along
with manifolds that in some sense look enough like compact manifolds, will al-
ways have a finitely generated fundamental group as we shall later see. Thus
the concept of a finitely generated group arises quite naturally in this thesis.
Moreover, the manipulation of growth concepts of a general metric space gets a
bit technical. What will be extremely pleasant is that finitely generated groups
are actually weakly doubling, so they have a unique growth rate. This is useful
as the fundamental groups of our manifolds will hold considerable amount of
the information we use in our results.

Let G be a group. We say that a set S ⊂ G generates the group G if every
element of G can be expressed as a finite combination of the elements of the
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set S ∪ S−1, where S−1 := {s−1 ∈ G | s ∈ S}. There always exists a basis
for a group, namely the group itself. We are interested mostly of the cases in
which the generating set, which we also call the spanning set, can be chosen to
be finite. We say that a group G is finitely generated, if there exists a finite set
that generates the group. A non-finitely generated group is a group that is not
generated by any of its finite subsets.

Definition 3.26. Let G be a group generated by a set S := {gi}. We define a
norm

‖·‖S : G→ N ⊂ R+

on this group by setting ‖e‖S = 0, and for g 6= e we set ‖g‖S to equal the
infimum of the natural numbers k such that g can be written as combination of
k elements of the set S ∪ S−1.

We also define a metric dS , called the word length metric on this group by
setting

dS(g, h) =
∥∥g−1h

∥∥
S

for all g, h ∈ G. We note that for the identity element e of G we have that
dS(e, g) = ‖g‖S for all g ∈ G.

We note that with respect to any spanning set S the metric space (G, dS)
is 1-separated. This means that we can talk about the growth function ΓS

G of a
group. The selection of a base point in the definition of a growth function is not
essential as we have already noted, but usually we will use the identity element
as a base point.

Remark 3.27. Because a non-empty subset of natural numbers always contains
a smallest element, the norm given in the previous definition is always obtained
with some finite product of elements of S.

More precisely, if S = {gi} is a set of generators, we will often write an
element g of the group with ‖g‖S = k in the form

g
εg(i1)
i1

· . . . · gε
g(ik)

ik
,

when we want to give a specific representation of the element. In this repre-
sentation the element-dependent symbols εg(ij) are ±1. We leave ourselves the
permission to omit the superscripts of these symbols when they are not needed
for clarity in order to simplify notation.

Theorem 3.28. The word length metric is a metric.

Proof. We need to show three conditions on this function. All its values are
clearly non-negative as natural numbers. Let g, h and s be arbitrary elements
of G.

We first note that dS(g, g) =
∥∥g−1g

∥∥
S
= ‖e‖S = 0.

Now we look at symmetry. If d(g, h) = k, then

g−1h = g
ε(i1)
i1
· . . . · gε(ik)ik

.

Thus

h−1g =
(
g−1h

)−1
=
(
g
ε(i1)
i1
· . . . · gε(ik)ik

)−1

= g
−ε(ik)
ik

· . . . · g−ε(i1)
i1

,
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and so dS(h, g) ≤ k = dS(g, h). By symmetry of the argument, dS(h, g) =
dS(g, h).

The triangle inequality also follows quite mechanically, as if dS(g, h) = k
and d(h, s) = n, then

g−1h = g
ε1(i1)
i1

· . . . · gε
1(ik)

ik
and h−1s = g

ε2(j1)
j1

· . . . · gε
2(jn)

jn
.

Thus

g−1s =
(
g−1hh−1

)
s = g

ε1(i1)
i1

· . . . · gε
1(ik)

ik
g
ε2(j1)
j1

· . . . · gε
2(jn)

jn︸ ︷︷ ︸
k+n pcs.

,

and so
dS(g, s) ≤ k + n = dS(g, h) + dS(h, s).

Thus the word length metric is a metric.

For groups we see that the definitions of the norm, the word length metric
and thus the growth function and -rate of a finitely generated group depend on
the selected finite set of generators. We shall now see that they will nevertheless
be equivalent for different sets of generators in the sense of asymptotic behaviour
i.e. growth rate.

Theorem 3.29. Let S1, S2 be two finite sets of generators for a finitely gener-
ated group G. Then there exists real constants a and b such that

a · ‖g‖S2
≤ ‖g‖S1

≤ b · ‖g‖S2

holds for all g ∈ G. So the word-norms in a group with respect to different
spanning sets are always bi-Lipschitz equivalent. Especially the growth rate of
the group does not depend on the finite set of generators.

Proof. We shall prove only the second inequality for the first inequality follows
from it.

As the set S1 generates the group G, we may write each element gi of S2 as
a combination of ki elements of S1. As the set S2 was finite, we may pick the
largest of the numbers ki, call it k. Now if we pick any g ∈ G with ‖g‖S2

= n
and write it as a combination of n elements of S2, we can replace each gi in this
representation by a product of at most k elements of the set S1. Thus we get a
representation for g with at most kn = k · ‖g‖S2

elements of S1, so

‖g‖S1
≤ k · ‖g‖S2

.

Thus the claim holds true.

We especially see that for finitely generated groups the rapidity of the growth
of a growth function ΓS

G does not depend on the selected finite set of generators.
This means that we can write ΓG when we are only interested in the asymptotic
behaviour of ΓS .

As we noted earlier, the growth concepts of a metric space turn much simpler
if our space is weakly doubling. We now show that finitely generated groups are
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always weakly doubling. Furthermore we note that for any generating set S for
a group G we have that

B
(
e, n
)
⊃ B

(
e, 1
)
= S ∪ S−1 ∪ {e}. Thus ♯B

(
e, n
)
≥ ♯B

(
e, 1
)
≥ ♯S

for all n ≥ 1. So if we have a non-finitely generated group, it has to have
infinitely many elements in any ball centered at the neutral element. A group is
always 1-separated, so this tells us that a non-finitely generated group cannot
be weakly doubling. This means that we could easily reformulate the following
result in a stronger form that would say that a group (G, dS) is weakly doubling
exactly when S is finite.

Lemma 3.30. Finitely generated groups are weakly doubling.

Proof. Note that B
(
g,R

)
= g ·B

(
e,R

)
, so ♯(B

(
g,R

)
) = ♯(B

(
e,R

)
)). Any ball

within B
(
e,R

)
with radius r ≥ 0 must contain at least one point, so in any ball

in G with radius R there can be at most ♯B
(
e,R

)
disjoint balls with radius

r < R. Assume now that the group is finitely generated, with a generating set
S, ♯S = K. Now for any n ∈ N

♯B
(
e, n+ 1

)
≤ K♯B

(
e, n
)
≤ · · · ≤ Kn♯B

(
e, 1
)
= Kn.

This proves the claim.

Thus the set Ord∗(G) always has a minimal element Ord(G) when G is
finitely generated.

Example 3.31. Let us look at the growth functions and orders of growths of
some familiar groups and metric spaces.

1. If we choose the set {1} as a finite generator for the group (Z,+), we see
that

ΓZ(n) = ♯{±1± . . .± 1︸ ︷︷ ︸
k pcs.

| 0 ≤ k ≤ n} = ♯ {−n, . . . , n} = 2n+ 1.

From this we see that the order of growth of this group is linear, Ord(Z) =
O(x1).
If we would choose another set of generators, say {1, 2}, we would see that
with respect to this set of generators of (Z,+) we have that

Γ′
Z
(n) = ♯ {−2n, . . . , 2n} = 4n+ 1,

and again Ord(Z) = O(x1). So even though a growth function changes,
the order of growth of the group stays the same due to the bi-Lipschitz
invariance.

2. All finite groups have polynomial growth with order of growth at most
0. This can be seen by noting that for a finite group G we can take
the group itself as a generator. Now ΓG(n) = ♯G for all n ≥ 2, and so
Ord(G) = O(x0).
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3. Let H be a finitely generated3 subgroup of a finitely generated group G.
By expanding any finite set of generators of H to a set of generators of G
we easily see that Ord(G) ≥ Ord(H).

4. Free group of 2 generators has exponential growth. Suppose the free group
is spanned by two symbols a and b. If we take for this the finite set {a, b}
as a set of generators we see that

Γ(n) = 22n + 1,

so Ord(〈a, b〉) = O(n 7→ en).

5. The set Z2 with metric induced from R2 is bi-Lipschitz equivalent to the
abelian group (Z2,+) with the finite set of generators {(0, 1), (1, 0)}. It
also has growth rate of order 2. This can be seen from the fact that
any ball B

(
(0, 0), r

)
⊂ Z2 is contained in a cube with side length 2r and

contains a cube with side length
√
2r. (This holds with respect to either

of the metrics.) Thus

2n2 ≤ Γ
(0,0)
Z2 (n) ≤ 4n2

for all n ∈ N.

In general it can be hard to find groups with a given growth rate, and it
is still somewhat unknown what kind of growth rates can groups have. We
mention a celebrated result of Grigorchuk that states that there exists a group
with superpolynomial but sub-exponential growth [Gri84].

3.3 Cayley graphs of groups

We next look at a way to visualize (finitely generated) groups and their metrics
with respect to different spanning sets. We do this by introducing the concept
of a Cayley graph. Each group with a set of spanning elements can be identified
with a graph that has the group elements as edges and translated spanning
elements as vertexes.

Definition 3.32. Let G be a group and S ⊂ G a set that generates this group.
The Cayley graph C(G,S) of this pair is defined by selecting the set G as
the edges and defining the edges as the set of pairs (g, h) ∈ G × G such that
g−1h ∈

(
S ∪ S−1

)
\ {e}.

This means that there exists a vertex between points g and h if and only if
one can be acquired from the other by multiplying with a spanning element or
its inverse. We omit here the neutral element from the spanning set in order to
remove edges from a vertex to itself.

Some examples of Cayley graphs of familiar groups are shown in figures 5,
6 and 7.

We define paths on a graph to be a finite ordered collection

{(ai, bi) ⊂ G×G | bi = ai+1, i = 1, . . . , n}
3Perhaps surprisingly, subgroups of finitely generated groups need not be finitely generated.

For example the commutator of the free group of two elements is not finitely generated. This
follows from example from [Coh89, Corollary 3, p. 15].
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Figure 5: The Cayley graph of (〈a, b〉, {a, b}).

of vertexes such that two consecutive vertexes have a common point as their
respective endpoint and beginning point.

The length ℓ(γ) of a path γ is just the number of elements in it as a set.
With this we can define a length-metric4 on a graph.

Definition 3.33. The length-metric on a graph is

d(x, y) = inf {ℓ(γ) | γ is a path and the endpoints of γ are x and y} .

The group metric of a finitely generated group and the metric of the corre-
sponding Cayley graph are essentially same in the following sense.

Theorem 3.34. The natural bijection

i : (G, dS)→ (C(G,S), d), g 7→ g

is an isometry.

Proof. The theorem is clear as the definitions of the two metrics are practically
identical.

4This actually corresponds to certain degree with a so called length structure as will be
defined in definition 4.1.
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Figure 6: Part of the Cayley graph of
(
Z2, {(1, 0), (0, 1)}

)
.

Figure 7: Part of the Cayley graph of (Z× Z3, {(1, [0]3), (0, [1]3)}).

3.4 Lipschitz quotient- and coarse Lipschitz quotient map-

pings

We now turn our attention into combining our knowledge of coarse quasi-
isometries and growth rate. To accomplish this it is natural at this point to
introduce the concept of a (coarse) Lipschitz quotient map. We give the basic
definition and properties required in this thesis, for further information we refer
to [BJL+99].

We show first that coarse quasi-isometries are always coarse Lipschitz quo-
tients, and then prove that Lipschitz quotient mappings cannot increase the
growth rate, at least in some sense. After that we will easily see that coarse
quasi-isometries have to preserve growth rates in the weak way that coarse Lip-
schitz quotient maps do not increase them. Later in section 5 we will show that
BLD mappings are Lipschitz quotients when the domain is complete, and with
this we will be able to get restraints to their existence.

Definition 3.35. A mapping f : X → Y between two metric spaces is called
Lipschitz quotient if there exists constants 0 < C1 ≤ C2 and r0 ≥ 0 such that
for any x ∈ X we have that

B
(
f(x), C1r

)
⊂ f

[
B
(
x, r
)]
⊂ B

(
f(x), C2r

)

for all r ≥ r0. Note that a Lipschitz quotient map has to be surjective by the
first inclusion.

Example 3.36. Let us look at some examples.
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1. All bi-Lipschitz maps are Lipschitz quotient.

2. The floor mapping R→ Z, x 7→ ⌊x⌋ is Lipschitz quotient, but not contin-
uous.

3. The mapping R+ → R+, x 7→ x2 is a homeomorphism, but not a Lipschitz
quotient map.

4. We shall show later (theorem 5.14) that all BLD mappings between path-
length manifolds are Lipschitz quotients when the domain is complete.

5. The inclusion Z →֒ R is a coarse quasi-isometry but not a Lipschitz quo-
tient map.

6. The mapping f : Z→ N defined by f(k) = |k| is a Lipschitz quotient map.

Lemma 3.37. The composition of two Lipschitz quotient mappings is a Lips-
chitz quotient.

Proof. Let f : X → Y and g : Y → Z be two Lipschitz quotient maps and
x0 ∈ X a point. For any r > max(rf , rg) we see that

(g ◦ f)
[
B
(
x0, r

)]
= g

[
f
[
B
(
x0, r

)]]

⊂ g
[
B
(
f(x0), Cfr

)]

⊂ B
(
g(f(x0)), CgCfr

)

= B
(
(g ◦ f)(x0), CgCfr

)
.

The other inclusion is similar.

We would like to compose Lipschitz quotients with coarse quasi-isometries,
but such compositions do not usually result in a Lipschitz quotient. This is why
we define a more flexible concept called a coarse Lipschitz quotient mapping.

Definition 3.38. A mapping f : X → Y between two metric spaces is called
coarse Lipschitz quotient if f : X → f [X] is Lipschitz quotient and the set f [X]
is ε-full in Y .

Example 3.39. There is no Lipschitz quotient map from natural numbers to
the integers.

Theorem 3.40. Coarse quasi-isometries are coarse Lipschitz quotients.

Proof. Let f : X → Y be a coarse quasi-isometry. The image of a coarse quasi-
isometry f is ε-full in Y by definition, so we only need to check the inclusions
concerning balls.

As f is assumed a coarse quasi-isometry, we have constants C > 0, D ≥ 0
such that

C−1d(x, y)−D ≤ d(f(x), f(y)) ≤ Cd(x, y) +D

for all points x, y ∈ X. Let x0 ∈ X and y ∈ f [B
(
x0, r

)
] with x ∈ B

(
x0, r

)
such

that f(x) = y. We note that

d(y, f(x0)) = d(f(x), f(x0)) ≤ Cd(x, x0) +D < Cr +D,
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so y ∈ B
(
f(x0), Cr +D

)
. This means that for all r ≥ D we have that

f [B
(
x0, r

)
] ⊂ B

(
f(x0), (C + 1)r

)
.

Let now z ∈ B
(
f(x0), R

)
∩ f [X]. This means that there exists x in X such

that f(x) = z. Now

C−1d(x, x0)−D ≤ d(f(x), f(x0)) = d(z, f(x0)) < R,

so x ∈ B
(
x0, C(R+D)

)
. This holds for all R > 0, so by denoting r = C(R+D)

we see that
z ∈ B

(
f(x0), C

−1r −D
)
∩ f [X]

implies f−1{z} ⊂ B
(
x0, r

)
for all r > D/C. But this implies that

B
(
f(x0), (2C)

−1r
)
⊂ f [B

(
x0, r

)
]

for all r > max(D/C, 2D) and this completes the proof.

Remark 3.41. By combining previous theorem and the latest example we now
see that there cannot exist a coarse quasi-isometry between Z and N even though
there exist a coarse Lipschitz quotient from Z to N as was also seen in the latest
example. Thus these classes of mappings are strictly different.

The following is a corollary of lemma 3.4 and theorem 3.40.

Corollary 3.42. Let X and Y be metric spaces, f : X → Y a coarse Lipschitz
quotient mapping between them and

ξX : X ′ → X and ξY : Y ′ → Y

coarse quasi-isometries. Then ξ−1
Y ◦ f ◦ ξX is a coarse Lipschitz quotient.

Lemma 3.43. Let X be a metric space. Suppose A is a full subset of X and B
is a full subset of A. Then B is full in X.

Proof. The claim follows immediately by triangle inequality.

To prove some of the following important results we will need the following
lemma.

Lemma 3.44. Let f : X → Y be a coarse Lipschitz quotient map and A ⊂ X
a full subset of X. Then f [A] is full in Y .

Proof. By the previous lemma it will suffice to prove the claim just for Lipschitz
quotient mappings.

Let y ∈ Y . As Lipschitz quotient mappings are always surjective there
exists a point x ∈ X such that f(x) = y. Because A ⊂ X is full in X we have
a constant ε such that B

(
A, ε

)
= X. This especially means that there exists

a ∈ A with d(x, a) < ε.
As f was assumed Lipschitz quotient, we have constants C and r0 such that

B
(
f(x),

r

L

)
⊂ f [B

(
x, r
)
] ⊂ B

(
f(x), Lr

)

for all points x ∈ X whenever r ≥ r0. Denote R := max{ε, r0}. As x ∈ B
(
a,R

)
,

we must have

f(x) ∈ f [B
(
x,R

)
] ⊂ B

(
f(x), LR

)
,

so f [A] is LR-full in Y .
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Lemma 3.45. The composition of two coarse Lipschitz quotient mappings is
coarse Lipschitz quotient.

Proof. The inclusions are proven exactly as in lemma 3.4. Suppose f and g are
mappings whose images are full. Now Im(f ◦ g) = f [Im(g)]. As g is coarsely
Lipschitz quotient its image is full, and by previous lemma the image of a full
set under a coarse Lipschitz quotient map is full.

Example 3.46. 1. All Lipschitz quotient maps are of course coarse Lips-
chitz quotient.

2. The inclusion Z →֒ R is not Lipschitz quotient because it is not surjective.
It is coarse Lipschitz quotient as a coarse quasi-isometry.

3. The mapping Z → R+, k 7→ |k| is coarse Lipschitz quotient but not a
coarse quasi-isometry.

All of our results that connect different classes of mappings to the growth
rate will be based on the following theorem.

Theorem 3.47. Suppose we have two metric spaces X and Y with f : X → Y a
coarse Lipschitz quotient map. For any net S of X there exists a net S′ ⊂ f [S]
of Y such that Ord(S) ≥ Ord(S′).

Proof. Let S be an εS-net ofX, and let f : X → Y be a coarse Lipschitz quotient
mapping with constants C1, C2, r0 and εf such that

B
(
f(x), C1r

)
⊂ f

[
B
(
x, r
)]
⊂ B

(
f(x), C2r

)

holds for all x ∈ X, r ≥ r0 and B
(
Im(f), εf

)
= Y .

The net S is full in X, so by lemma 3.44 its image f [S] under the coarsely
Lipschitz quotient map f is full in Y . This means that by lemma 3.12 there
exists a net S′ in f [S] that is a net also in Y . To prove our claim we only
need to show now that Ord(S) ≥ Ord(S′). Let us fix a point y0 ∈ S′ and pick
x0 ∈ S ∩ f−1{y0}. For any ball B

(
x0, r

)
we note that by Lipschitz quotient

inequalities we have

f [B
(
x0, r

)
] ⊃ B

(
y0,

r

L

)

for all r ≥ r0. By definition of the net S′, we note that

f [S ∩ B
(
x0, r

)
] ⊃ S′ ∩ B

(
y0,

r

L

)
.

For any set A we always have ♯A ≥ ♯f [A], so we get finally that

♯
(
S ∩ B

(
x0, r

))
≥ ♯f [S ∩ B

(
x0, r

)
] ≥ ♯

(
S′ ∩ B

(
y0,

r

L

))
.

This means that ΓS(r) ≥ ΓS′(r/L) for all r ≥ r0, which proves the claim.

Remark 3.48. Note that theorem implies that if we have coarse Lipschitz quo-
tient mapping between metric spaces X and Y , then any lower bound of the
growth class of Y gives a lower bound for the growth class of X.
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Now we are ready to prove the following theorem which is, combined with the
remark that follows it, the most important property of coarse quasi-isometries.
Growth rate is a coarse quasi-isometry invariant in the following sense.

Theorem 3.49. Suppose we have two metric spaces X and Y with f : X → Y
a coarse quasi-isometry. For any net S of X there exists a net S′ of Y such
that Ord(S) ≥ Ord(S′), and for any net P of Y there exists a net P ′ of X such
that Ord(P ) ≥ Ord(P ′).

Proof. The first claim follows by theorem 3.47, to the function f which is by
theorem 3.40 coarse Lipschitz quotient. The second claim follows by doing the
same to the coarse quasi-isometry f−1.

Remark 3.50. Note that theorem implies that if we have coarsely quasi-isometric
metric spaces X and Y , then any lower bound of the growth class of Y gives a
lower bound for the growth class of X as well and vice versa.

Moreover, if both growth classes contain a minimal element, they must equal.
This is what is we mean by coarse quasi-isometries preserving growth of metric
spaces.

Remark 3.51. Note that theorem 3.49 is not of the form ’if and only if’. For ex-
ample the spaces Z and N both have polynomial order of growth 1, but they are
not coarsely quasi-isometric. (This was seen in one of the previous examples.)
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4 Length space manifolds

To state and prove the main result of this thesis we need most of all a path-
metric (and a length structure) to our manifold. We prove all of our main results
for general topological manifolds with length structure, but to give concrete
examples we show that Riemannian- and Lipschitz manifolds are such objects.

We will also need to bound the geometric behaviour of our manifolds. We
take one form of the usual requirement in this field and give upper and lower
bounds to the ’sizes of holes’ in our manifold. In some of our more sophisticated
results we use stronger assumptions, most of which are kind of homogeneity
requirements on the geometry. We will give some stronger, more concrete re-
quirements that will guarantee manifolds to have the needed criteria. Most im-
portantly we will see that compact manifolds have all the properties that bind
fundamental group in the ways that we define in this section. We note that
when proving the existence of a universal cover for our manifold, we showed
that any manifold is (semi)locally simply connected. This requirement can be
seen to be a sort of lower bound on the size of holes in our manifold, but is too
purely topological in nature to give us a bound rigid enough.

4.1 Path-metric structures

We begin by defining a length structure on a set. This definition is from [Gro99,
definition 1.3., p.2].

Definition 4.1. A length structure (C, ℓ) on a set X is a collection of paths
C(I) in X for each interval I ⊂ R and a mapping ℓ : C :=

⋃ C(I) → R+ having
the following properties:

(a) All constant paths belong to C, and for f ∈ C we have that ℓ(f) = 0 if and
only if f is a constant path.

(b) If I ⊂ J , and f ∈ C(J), then f |I ∈ C(I).

(c) If f ∈ C([a, b]) and g ∈ C([b, c]) with f(b) = g(b), the path f ∗ g : [a, c]→ X
constructed naturally from f and g belongs to C([a, c]) and we have that
ℓ(f ∗ g) = ℓ(f) + ℓ(g).

(d) If ϕ : I → J is a homeomorphism and f ∈ C(J), then f ◦ ϕ ∈ C(I), and
ℓ(f ◦ ϕ) = ℓ(f).

(e) For each f ∈ C([a, b]), the map t 7→ ℓ(f |[a,t]) is continuous.

We call the elements of C rectifiable paths, and we set ℓ(γ) = ∞ for any
non-rectifiable paths. If we have a length-structure C on a set X such that any
two points in X can be connected with a rectifiable path we say that the set X
is rectifiably connected with respect to C. A length manifold M is a manifold
together with a length structure (C, ℓ) such thatM is rectifiably connected with
respect to C and so that the topology given by the metric defined by

dℓ(x, y) = inf {ℓ(γ) | γ ∈ C, γ : xy y}(1)

coincides with the original topology of our manifold. We must have the manifold
rectifiably connected to get a metric from the function dℓ. When talking about
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length manifolds we shall always refer by ’metric’ to the path-metric given by
(1).

We can equip any metric space with a path-length structure as follows.

Definition 4.2. Let (X, d) be a path-connected metric space. We define the
length ℓd(·) of a path γ : [0, 1]→ X by setting

ℓd(γ) = sup

{
n−1∑

i=1

d (γ(ai), γ(ai+1)) | a1, . . . , an ∈ [0, 1], a1, < · · · < an, n ∈ N

}

We will allow the values of ℓd be in [0,∞]. We call paths with finite length
rectifiable.

This path-length structure clearly satisfies the requirements in the definition
of path-length structure. Do note that even when dℓ is a metric, it need not be
(bi-Lipschitz) equivalent to the original metric d.

Theorem 4.3. Suppose M is a manifold and M̂ its cover. If M is a length
manifold, so is M̂. Furthermore the length structure can be chosen so that the
covering map becomes a local isometry.

Proof. Denote by (C, ℓ) the length structure ofM. The length structure (C̃, ℓ̃) of
universal cover is obtained by taking for each interval I ⊂ R all the continuous
paths γ : I → M̃ for which (pM ◦γ) ∈ C(I), and defining ℓ̃(γ) = ℓ(pM ◦γ). This
definition gives us a length structure in the sense of definition 4.1. We skim
through the requirements.

Part (a) follows as the covering map is a local homeomorphism, so pM ◦ γ
is a constant map if and only if γ is. So we see that

ℓ̃(γ) = 0 ⇔ ℓ(pM ◦ γ) = 0 ⇔ pM ◦ γ is a constant path .

Parts (b) and (c) are clear by the definition of C̃(I).
To see part (d), let ϕ : I → J be a homeomorphism. Now because γ ◦ ϕ is

rectifiable so is (pM ◦ γ) ◦ ϕ. Also

ℓ̃(γ ◦ ϕ) = ℓ(pM ◦ γ ◦ ϕ) = ℓ(pM ◦ γ) = ℓ̃(γ).

Part (e) follows as the covering map is continuous.
Furthermore the cover is rectifiably connected when M is. To see this we

take any two points x, y ∈ M̂. As the pre-images of covering neighbourhoods
under pM form a basis for the topology of M̂, we may connect x and y with a
finite sequence U1, . . . , Un of domains such that pM[Uj ] is a domain in M for
all j = 1, . . . , n. Within these domains we can construct rectifiable paths and
connect the points x and y with a composition of these finitely many paths.

We can now define the path length metric in M̂ as before with a length
structure; we set

d̃(x, y) = inf
{
ℓ̃(γ) | γ : xy y, γ rectifiable

}
.

With the given definition of length in M̂, the covering map pM comes a local
isometry. As it is both local isometry and local homeomorphism, the original
topology of M̂ coincides with the topology given by the metric d̃.
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From now on we assume all covers of length-manifolds to be also length-
manifolds with the metric constructed in the previous theorem. Note that
whenever we have a geodesic on a manifolds, any of its lifts is a geodesic in
the cover. Composing a geodesic with a covering map gives rise to a local
geodesic.

We shall later need the following structure result for complete length space
manifolds. This can be seen to be a Hopf-Rinow type theorem. We prove the
result first in full generality.

Theorem 4.4. Complete locally compact connected length spaces have the Heine-
Borel property, i.e. every closed bounded subset is compact.

Proof. Let X be a complete locally compact connected length space. It suffices
to show that closed balls are compact, as all bounded sets are by definition
subsets of balls, and closed subsets of compact sets are compact. Let us assume
that there exists a closed ball B(x0, R) that is not compact. By taking a small
enough neighbourhood of x0 we find by local compactness radius r < R such
that B(x0, r) is compact. This means that the set

{r ∈ R+ | B(x0, r) is compact} ⊂ R

is non-empty and bounded above, so there exists a supremum of this set which
we denote by R0. We will first show that B(x0, R0) is compact. Note that all
closed balls centered at x0 with radius strictly less than R0 need to be compact,
as the closed balls are closed sets and a closed subset of a compact set is itself
compact.

Let us assume that B(x0, R0) is not compact. Then there exists a sequence
(xn) ⊂ B(x0, R0) that has no convergent subsequence. As the balls B(x0, r),
r < R0 are all compact, we must have that ♯

(
(xn) ∩ B(x0, r)

)
< ∞ for all

r < R0 because otherwise we would find a converging subsequence from one of
these compact balls. This especially means that there must be a subsequence
of (xn) in B(x0, R0) \ B(x0, r) for all r < R0.

The sequence (xn) is a sequence within a closed set of a complete metric
space. If it had a Cauchy subsequence, this subsequence would converge in
X and limit would lie in the closed set B(X,x0). But because we assumed
that the sequence (xn) has no converging subsequences this cannot happen, so
the sequence (xn) has no Cauchy subsequences. Especially there must be a
constant c > 0 such that we have infinitely many elements of the sequence (xn)
with mutual distances at least c. Call this collection K.

Let us pick r ∈ ]R0 − c/4, R0[. Denote

A :=
{
B(x, c) | x ∈

(
B(x0, R0) \ B(x0, r)

)
∩K

}
.

Suppose A := B(x, c) ∈ A. By connecting x0 to x with a short enough path
we find xA ∈ ∂ B

(
x0, r

)
such that

A ∩ ∂ B
(
x0, r

)
⊃ B

(
xA,

c

4

)
∩ ∂ B

(
x0, r

)
.

Note that by previous deduction we must have ♯A =∞ But this cannot happen
as the set ∂ B

(
x0, r

)
is compact by assumption, so we find a finite subcover

to an open cover consisting of balls with diameter with radius less than c/8,
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and from this finite set we have a surjection to the infinite set A. This is a
contradiction and thus the set B(x0, R0) must be compact.

Let us now take open cover

{
B
(
x, r
)
| x ∈ ∂B(x0, R0), B(x, r) compact, r ∈ R+

}

for ∂B(x0, R0). (This is possible as the metric space was assumed locally com-
pact.) We pick for this a finite subcover B. Note that the union

A := B(x0, R) ∪
⋃

B∈B

B

is compact, as it is a union of finitely many compact sets. Now there exists a
Lebesgue number λ > 0 for the cover B as it is an open cover of the compact
set ∂B(x0, R). From this it follows that B(x0, R0 + λ/2) is compact as a closed
subset of the compact set A. This is a contradiction with the definition of R0

and so we must have the claim.

Corollary 4.5. Complete length manifolds M with a path-metric have the
Heine-Borel property, i.e. every closed bounded subset is compact.

Corollary 4.6. SupposeM is a complete length manifold and S is a net inM.
Then ΓS(r) <∞ for all r ∈ R+.

Proof. Let S be on ε-net in the complete length manifoldM. For any x0 ∈M
and r ∈ R+ we look at the collection

U := {B
(
x, ε/4

)
| x ∈ S ∩ B(x0, r).}

This consists of disjoint balls as S was ε-separated. Let us take for B(x0, r+ ε)
an open cover consisting of balls with radius less than ε/10 and call it B. For
this we can by compactness guaranteed by corollary 4.5 take a finite subcover
A. Now every element in U contains an element of A. As the elements of U
were disjoint there now is a surjection from the finite set A to U and this proves
the claim.

A length-space (X, dℓ) is called geodesically complete if for any two points
x, y ∈ X there exists a length-minimizing path γ : x gy y. The following is
also a Hopf-Rinow type theorem. Proof can be found for example from [Gro99,
Section 1.12., p.9]. (The proof is essentially an application of Ascoli’s theorem.)

Theorem 4.7. A complete length-manifold is geodesically complete.

4.2 Concrete examples of length manifolds

As promised, we now show that two familiar classes of manifolds are length
manifolds. We give the definitions briefly and for further information and details
we refer to [Lee03].
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4.2.1 Riemannian manifolds

A smooth structure for a topological manifold M is a collection A of charts
(Uα, ϕα) ofM such that the sets Uα cover the manifoldM and the transition

mappings
(
ϕα ◦ ϕ−1

β

)
|Uα∩Uβ

are smooth mappings. A smooth manifold is a

topological manifold with a maximal smooth structure.

Definition 4.8. A Riemannian manifold is a smooth manifold with a smooth 2-
covariant tensor field g that is symmetric and positive definite. This tensor field
is called the Riemann tensor. A Riemannian manifoldM with the corresponding
Riemann tensor is denoted by (M, g).

All smooth manifolds have a Riemann tensor, so we could only assume our
manifolds to be smooth in this section, but this would be only an artificial
enhancement.

Definition 4.9. Let γ : [a, b]→M be a smooth path on a Riemannian manifold
(M, g). We define the length of this path to be

ℓ(γ) =

∫ b

a

gγ(t)(γ̇, γ̇) dt.

The length of a piecewise path is defined to be the sum of the lengths of the
smooth components.

In lemma 2.14 we found paths between arbitrary points of a manifold. In this
proof the final path was a composition of finitely many paths that were “lifted”
from Rn to our manifold by chart-homeomorphisms. In the smooth case we may
imitate this proof by using smooth charts instead of mere homeomorphisms, and
lift not just continuous paths but piecewise smooth paths. This is possible as
each connected open subset of Rn is not only path-connected, but we may choose
these paths to be piecewise linear. The lifts of these under smooth charts are
still piecewise smooth and so is a finite composition of these. Thus every pair
of points can be connected with a piecewise smooth path. This actually gives
us a length structure on the Riemannian manifold M. The requirements of
definition 4.1 are straightforward to check.

Furthermore, we may approximate any continuous path on a smooth mani-
fold by a piecewise smooth path. To do this one needs to cover the continuous
path with chart-neighbourhoods in a useful way, use compactness of the image
of the path and lift approximating piecewise smooth paths from Rn.

This all means that the following definition is sufficient and does define a
metric.

Definition 4.10. We define a path-length structure to a Riemannian manifold
M by taking C to be the collection of all piecewise smooth paths on M. The
length defined in definition 4.9 makes this a path-metric structure on M. By
the previous notions a Riemannian manifold is always rectifiably connected with
respect to this length structure, so the function dℓ is a metric.

By the basic theorems of Riemannian geometry, the metric thus given in-
duces a topology that coincides with the original topology of the Riemannian
manifold. Thus we now that a Riemannian manifold is a length manifold.
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We noted earlier that weakly doubling metric spaces behave nicely when
working with growth rate. We mention the following very nice theorem, that
follows from [Kan85, Lemma 2.3, p.397]. This theorem gives us lots of examples
of weakly doubling length manifolds.

Theorem 4.11. A complete Riemannian manifoldM whose Ricci curvature is
bounded from below is weakly doubling.

4.2.2 Lipschitz manifolds

Lipschitz manifolds are defined in a similar manner as smooth manifolds. In-
stead of requiring the transition mappings to be smooth, we merely require them
to be bi-Lipschitz.

LetM be an n-dimensional manifold. We call a collection of charts ofM

A = {(Uα, ϕα) | ϕα : Uα → Rn, α ∈ I} ,

a Lipschitz atlas if the following two conditions hold. The sets Uα cover the

manifold M and the transition mappings
(
ϕα ◦ ϕ−1

β

)
|Uα∩Uβ

are bi-Lipschitz

mappings.

Definition 4.12. A Lipschitz manifold is a topological manifold together with
a maximal Lipschitz atlas.

To define a path-length structure for a Lipschitz manifold M we note that
as manifolds are always paracompact by lemma 2.8. This means that we may
take a locally finite refinement of the open cover of a Lipschitz manifold that
consists of the neighbourhoods in the given Lipschitz atlas. This locally finite
refinement gives rise to a subatlas of the original atlas. Call this locally finite
atlas B. For any path γ : [0, 1] →M in our manifold we can now pick for each
y ∈ γ[0, 1] a neighbourhood Uy intersecting only finitely many elements of B.
In fact we may select Uy to be so small that it intersects the minimal amount
of elements B possible. The image of γ is compact as a continuous image of a
compact set, so B has a finite subcover. Let K be any finite subcover of B. Let
us define

ℓK(γ) =
∑

B∈K

ℓ(fB ◦ γ),

where fB is the chart mapping associated with B. Now we set

ℓ(γ) = inf(ℓK(γ) | K a finite subcover of B).

This gives us a length structure of our manifold. Note that this length structure
does depend on the chosen locally finite subatlas B.

Metric structure of a Lipschitz manifold is also discussed in [LV77, Section
3.].

4.3 Binding the geometry

The results of this thesis are essentially geometric, so we need the objects ex-
amined to have a sensible geometry, at least in some sense. We will use a
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requirement that resembles a common requirement in this field which is that of
a bounded injectivity radius. To avoid confusion our mimicking condition will
be called a null-homotopy radius. We also show how a strictly positive null-
homotopy radius is easily obtained by demanding bounded local geometry. We
will need bounded geometry in the ’other direction’ as well, so we will bind the
geometry from above via the concept of a diameter bounded fundamental group.
We will give both weak and strong versions of these. Both of these bounds can
always be found from the concrete example of a compact length manifold.

Definition 4.13. For each x ∈M let us denote by rxnh the supremum of those
r ≥ 0 for which any loop based on x of length at most r is homotopic to a
constant path t 7→ x. This number rxnh is called the weak null-homotopy radius
ofM at x.

A manifoldM is said to have a strictly positive weak null-homotopy radius
if for every point x ∈M we have that rxnh > 0.

The infimum rnh := inf{rxnh|x ∈ M} of the weak null-homotopy radii is
called the null-homotopy radius of M and say that that manifold M has a
strictly positive null-homotopy radius if rnh > 0.

Note that a length manifold is simply connected if and only if the null-
homotopy radius rnh = ∞. Also note that a strictly positive null-homotopy
radius guarantees the weak condition as well.

Theorem 4.14. A compact length manifold M has a strictly positive null-
homotopy radius.

Proof. For every point x ∈M we can take a chart U around x homeomorphic to
Rn via a chart-mapping. Within this chart we pick a ball B

(
x, εx

)
. BecauseM

is compact, we have a Lebesgue number λ such that for all points y ∈ M that
B
(
y, λ
)
⊂ B

(
x, εx

)
for some x ∈ M. Thus if we take any loop γ : [0, 1] → M

with ℓ(γ) < 2λ we must have that γ([0, 1]) ⊂ B
(
γ(0), λ

)
⊂ U . But this means

that the loop γ is null-homotopic, as it lies in a set homeomorphic to a simply
connected set Rn via a chart.

Thus for the null-homotopy radius rnh of the manifold M we have that
rnh ≥ 2λ > 0.

Definition 4.15. An n-dimensional length manifold M has a bounded local
geometry (sometimes abbreviated BLG) if there exists constants L ≥ 1 and
r > 0 such that every point x ∈ M has a neighbourhood U for which there
exists an surjective L-bi-Lipschitz mapping f : (U, x)→

(
B
(
0, r
)
, 0
)
⊂ Rn.

Note that the bounded local geometry condition arises naturally only in the
category of Lipschitz-manifolds. All Lipschitz manifolds do not of course have
bounded local geometry, but we do have the following result.

Theorem 4.16. A compact Lipschitz length-manifold has bounded local geom-
etry.

Proof. LetM be a compact n-dimensional Lipschitz manifold, and B a locally
finite subatlas that defines a length structure to M. For any point x ∈ M
we can find a neighbourhood Ux that is Lx-bi-Lipschitz -equivalent to some
B (0, rx) ⊂ Rn, as we have required the transition mappings to be bi-Lipschitz
maps to open subsets of Rn. Furthermore we can choose the neighbourhoods
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Ux to be balls so small that they are contained in a member of B and have a
common lower bound r0 to their diameter. (By using for example a Lebesgue
number.)

Now the neighbourhoods Ux are L-bi-Lipschitz equivalent to unit balls of Rn

via restrictions of the chart-mappings. (The length structure ofM with respect
to the subatlas B makes the chart mappings associated with B bi-Lipschitz
mappings with a common constant.)

Theorem 4.17. A manifold with bounded local geometry is always complete.

Proof. Assume the BLG-constants are L and r. We pick a Cauchy sequence
(xn) from M, and pick n0 so large that xn ∈ B

(
xn0

, r
4L

)
for all n ≥ n0. This

ball is mapped into the set B
(
0, r2

)
⊂ Rn via a bi-Lipschitz map f . Thus the

sequence (f(xn)n≥n0
is a Cauchy sequence and thus converges to a point y0 in

the complete space Rn. As we picked the ball around xn0
small enough, the

limit lies within B
(
0, r
)
, and we thus find a limit point f−1{y0} to the sequence

(xn) inM as the mapping f is a homeomorphism.

The whole reason for us to talk about bounded local geometry is the following
result.

Theorem 4.18. A manifoldM with bounded local geometry has a strictly pos-
itive null-homotopy radius.

Proof. By the BLG property there exists L ≥ 1 and r > 0 so that every point
x ∈ M has a neighbourhood Ux and a surjective L-bi-Lipschitz map fx : Ux →
B
(
0, r
)
with fx(x) = 0.

It suffices to show that B
(
x, r

L

)
⊂ Ux for all x ∈ M. Let y ∈ B

(
x, r

L

)
and

γ : [0, 1]→ B
(
x, r

L

)
be a path connecting the points x and y in B

(
x, r

L

)
. Set

t0 = sup {t ∈ [0, 1] | γ[0, t] ⊂ Ux} .

Let us assume that t0 < 1. Because B
(
x, r

L

)
is open, there exists a neighbour-

hood U of γ(t0) within B
(
x, r

L

)
. By looking at a ball around x with radius

less than 1
4

(
r
L
− d(γ(x0), x)

)
we see that there exists a number a such that

d(γ(t), x) < a < r
L

for all t sufficiently close to t0.
By the definition of t0 and as fx is a bi-Lipschitz homeomorphism, fx(γ(t0)) ∈

∂ B
(
0, r
)
and so

lim
t→t0−

d(fx(γ(t)), ∂B(0, r)) = 0.

This means that for any ε > 0 there exists a point s ∈ [0, t0] such that
d(fx(γ(s)), ∂B(0, r)) < ε, which in turn implies by triangle inequality that
d(fx(γ(s)), 0) > r − ε. Moreover we can choose s to be so close to t0 that
γ(s) ∈ U .

Now we finally see that

r − ε < d(fx(γ(s)), 0) = d(fx(γ(s)), fx(x)) ≤ Ld(γ(s), x) < a < r.

But if we choose ε < r − a, this implies that a < a. This is a contradiction, so
we must have that t0 = 1.

We still need to show that γ(1) = y ∈ Ux. But y /∈ Ux would imply
that y ∈ ∂Ux. Because y belongs to the open set B

(
x, r

L

)
, there exists a
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neighbourhood A of x contained in B
(
x, r

L

)
. But now as y ∈ ∂Ux, we must have

A ∩ ∁Ux 6= ∅. This means that we can extend our path closer to the boundary
of B

(
x, r

L

)
and iterate the previous argument to create a contradiction. The

claim thus holds.

We have already bounded the behaviour of the geometry of our manifold
from below by the null-homotopy radius. Next we define a concept that bounds
the behaviour from above. Combining these two criterions we get manifolds
that have no geometrically interesting properties in too small scales or too far
from some fixed area. We again give both a weak and a strong version of the
requirement.

Definition 4.19. We say that a length manifold M has a weakly diameter
bounded fundamental group if for every point x ∈ M there exists a constant
Kx

Π ∈ R so that for any homotopy class [γ] ∈ Π1(M, x) contains an element α
with d(|α|) ≤ Kx

Π.
If a constant KΠ can be chosen globally, we say that the fundamental group

ofM is diameter bounded.

The idea of a strictly positive (weak) null-homotopy radius and an (weakly)
diameter bounded fundamental group is to abstract those properties of a com-
pact manifold that guarantee nice properties for the fundamental group. From
the homotopic point of view we have no problem working with, for example,
the cylinder R× S1, but restricting ourselves to compact manifolds would rule
out such spaces. Furthermore, our main results can be enhanced by using the
combined growth of the original manifold and its fundamental group. In these
cases we need (among other constraints) the strong versions of bounds on our
geometry to get the structure of our manifold to be homogeneous enough. This
result of combined growth yields something similar to the Varopoulos type re-
sult, but the general case where we allow the base space to grow itself is very
natural and much more interesting in the sense of growth.

The following theorem and its corollary are trivial although useful for some
of the corollaries of our main results.

Theorem 4.20. A bounded length manifold has diameter bounded fundamental
group.

Corollary 4.21. A compact length manifold has diameter bounded fundamental
group.

Theorem 4.22. Let M be a length manifold. Suppose there exists a bounded
set A such that any loop γ : [0, 1] → M with γ(0) ∈ A is homotopic to a loop
that lies within the set A. ThenM has a weakly diameter bounded fundamental
group.

Proof. This follows easily as we now clearly have d(|α|) ≤ d(A)d(x0, A) + 1 for
any loop α with α(0) = x0.

4.4 Ascended structures of the universal cover

We now turn again to the structure of covers of a manifold. We wish to check
which properties defined so far can be lifted to the universal cover, and in what
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ways can we extract more specific information about the universal cover. We
first show that some of the path-metric concepts like the bounds on the geometry
ascend to the (universal) cover.

Corollary 4.23. SupposeM is a length-manifold and M̂ its cover. Then:

1.) IfM has a strictly positive (weak) null-homotopy radius, so does M̂. More-

over, denote the (weak) injectivity radii of M and M̂ by r and r′, respec-
tively. Then r ≤ r′. Also the null-homotopy radius of the universal cover is
always ∞.

2.) IfM has a bounded local geometry, so does M̂.

3.) The manifoldM is complete if and only if M̂ is complete.

Remark 4.24. we already know that the universal cover of a manifold is a man-
ifold itself, so all the claims are well-defined.

Proof. We prove the claims one at a time. We shall receive these ’induced’ by
the covering map.

1.) The fact that the universal cover has strictly positive null-homotopy
radius follows immediately from the previously stated fact that the universal
cover of a manifold is simply connected and thus rnh = ∞. Thus we will have
our main interest in this proof in the ’non-universal’ covers ofM.

Let rxnh > 0 be the null-homotopy radius ofM. We immediately note that
whenever we take a loop α in our cover with length less than rxnh, the loop pM◦α
inM has also length less than rxnh and is thus null-homotopic. Homotopies lift
to the cover via the covering map by basic results of covers, so the original loop
is also null-homotopic. Thus the cover M̂ has null-homotopy radius at least rxnh
at every point y ∈ p−1

M{x}. The ’non-weak’ case follows from this.
We do find it fascinating that if we create an ordering on the covers of a

manifold based on whether or not they are covers of each other, this ordering
respects the injectivity radii. See corollary 4.25 for a more specific formulation.

2.) Let the ’BLG-constants’ of M be L and r. By the definition of the
length-metric on any cover, the covering map comes a local isometry. As the
BLG-neighbourhoods of any point x ∈ M̂ are simply connected, they are all
lifted as disjoint BLG-neighbourhoods of points p−1

M{x}. This proves the claim.

3.) The claim follows as we have defined the metric in any cover such that
the covering map is a local isometry.

Corollary 4.25. Take all the covers of a manifoldM and order them by setting
(M̂1, p

1
M) ≤ (M̂2, p

2
M) if there exists a covering map p : M̂2 → M̂1 such that

p1
M̂
◦ p = p2

M̂
. Now if two covers ofM are in some order, their injectivity radii

are in the same order.

Proof. This follows from the proof of part 2) of the previous theorem.

Remark 4.26. There is a very natural well-known map that embeds the funda-
mental group of a manifold into its universal cover. As the lifts of two loops in a
manifold have the same endpoint if and only if the original loops are homotopic,
we may define

ϕx
M : Π1 (M, x)→ (M̃, x̃), ϕx

M ([γ]) = γ̃(1).
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for any x ∈M, x̃ ∈ p−1{x}. (Here the lifted paths are understood to start from
x̃.)

The mapping ϕx
M is always injective. Next we see that a strictly positive null-

homotopy radius rnh of a manifoldM ascends into a bound for the discreteness
of the image of ϕM. More precisely we state the following theorem, which
would give us justification to call our null-homotopy radius as ’injectivity radius’
instead.

Theorem 4.27. LetM be a manifold with strictly positive weak null-homotopy
radius rx

nh
at x ∈M. Then for any two disjoint x, y ∈ ImϕM we have d(x, y) ≥

rnh.

Proof. The claim follows immediately from the definition of weak null-homotopy
radius and from the fact that any path between two distinct points of Imϕx

M

represents a nonzero element of Π1 (M, x).

Note that a similar map could be defined from Π1(M, x) to any cover ofM.
The previous theorem would not hold in its current form, but we would have
a weaker result stating that the distances between image points are zero or at
least rnh.

We are now ready to improve the result of theorem 2.11 for length manifolds
with strictly positive null-homotopy radius and an diameter bounded funda-
mental group. The following proof is adapted version of the proof of a similar
theorem, namely the first part of [Gro99, Proposition 3.22., p.90]. However in
the book of Gromov the result is proven only for compact manifolds.

Theorem 4.28. Let (M, x0) be a complete length manifold with strictly positive
weak null-homotopy radius at x0 and a weakly diameter bounded fundamental
group at x0. Then the fundamental group Π1(M, x0) of (M, x0) is finitely gen-
erated.

If in addition rnh > 0, the spanning set can be chosen to be a finite subset of

G = {[α ∗ β ∗ γ] ∈ Π1(M, x0) | α : x0 gy x, β : x gy y, γ : y gy x0, x, y ∈M} .

Proof. As we assumed the manifold to have an weakly diameter bounded fun-
damental group, we know that there exists a constant K := Kx0

Π such that all
homotopy classes in Π1(M, x0) contain a loop with diameter less than K. Let
ε1 > 0 be arbitrary. For each element [γ] of the fundamental group Π1(M, x0)
we choose a rectifiable representative loop γ : [0, 1]→M with d(|γ|) ≤ K. Call
this set of representatives P1(M, x0). For each path γ we take a partition

0 = aγ0 < aγ1 < · · · < aγn = 1

of the domain interval such that ℓ(γ[aγ
i ,a

γ
i+1

]) < ε1 for all i = 0, . . . , n− 1.

Next for all γ ∈ P1(M, x0) we take geodesics

cγj : x0 gy γ(aγj ), ℓ(cγj ) = d(x0, γ(a
γ
j )),

where j = 0, . . . n. Now each path γ can be represented as a product of loops

of the form cγi γ[ai,ai+1]

←−−
cγi+1:

γ = γ[a0,a1] · · · γ[an−1,an] ∼
(
cγ0γ[a0,a1]

←−
cγ1

)(
cγ1γ[a1,a2]

←−
cγ2

)
· · ·
(
cγn−1γ[an−1,an]

←−
cγn

)
.
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By the definition of P1(M, x0) we have that d(x0, γ(ai)) < K for all points
ai. We now see that

ℓ(cγi γ[ai,ai+1]

←−−
cγi+1) = ℓ(cγi ) + ℓ(γ[ai,ai+1]) + ℓ(

←−−
cγi+1)

≤ d (x0, γ(ai)) + ε1 + d (x0, γ(ai+1))

≤ 2K + ε1 <∞.

This means that all the representatives can be expressed as a product of loops
with length less than R, where R = 2K + ε1 is independent of any choice of
homotopy classes or their representatives. This means that all elements of the
fundamental group can be expressed as a product of homotopy classes of loops
containing a loop with length less than R. All we need to show now is that
there can be only finitely many such classes. For this we shall need the strictly
positive weak null-homotopy radius at x0.

Let us pick x̃0 ∈ p−1
M{x0}. We defined the path-length structure in the

universal cover by demanding that the covering map preserves path-lengths.
This means that the loops with length less than R inM are lifted to paths in
M̃ also with length less than R. Thus it will suffice to show that the following
set, which is basically the image of the loops with bounded length under an
injective map,

B∗ = ImϕM ∩B
(
x̃0, R

)

is finite. But this is now easy, as by theorem 4.27 there is a lower bound to
the distances between points in B∗ given by the weak null-homotopy radius
r := rx0

nh, so it is a subset of an r-net in a bounded subset of a complete length
manifold, so by corollary 4.6 it must by finite and this proves the first claim.

Suppose now that in addition rnh > 0. By rewriting the beginning of the
proof we may take the partition a1 < . . . < an to be so small that the restrictions
γ|[aj , aj+1] are homotopic to geodesics. Substituting these in place of the paths
γi we get the second claim.

We have the following corollary that is amusing, but useless for us as homo-
topy equivalences do not have to preserve any geometric structure.

Theorem 4.29. Assume thatM is a manifold homotopy equivalent to a com-
plete path-length manifold that satisfies the criterions of theorem 4.28. Then the
fundamental group Π1(M) of the manifoldM is finitely generated.

Proof. The claim follows as a homotopy equivalence induces an isomorphism
between fundamental groups of topological spaces, and the property of a group
being finitely generated is preserved under isomorphisms.

Remark 4.30. In theorem 4.23 we gave results for the ascension of the null-
homotopy radius, but nothing for diameter bounded fundamental group. This is
because the universal cover is always simply connected and has thus a diameter
bounded fundamental group, but any other covers do not need to have this
property as we shall now see.

We like to think that going ’up’ along covering spaces always ’opens up’ the
topological space in question. This means that it is quite natural that as is
the case with boundedness, an arbitrary cover of a manifold with a diameter
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bounded fundamental group rarely has a diameter bounded fundamental group
itself. This can be seen by studying any compact manifoldM that has the free
group of two elements as a subgroup of its fundamental group. We know that
the the commutator subgroup H of the free group of two elements, is not finitely
generated. Especially there H is a non finitely generated subgroup of Π1(M).
By a interesting result of covering spaces, whenever we have a topological space
X which has a universal cover, we find for every subgroup G ≤ Π1(X) a cover X̂

of X such that Π1X̂ = G, and X̂ = X̃
/
G . Especially there exists a cover Y of

the manifoldM that has the non-finitely generated group H as a fundamental
group. This cover is by parts 1) and 2) of theorem 4.23 a path-length manifold
with a strictly positive null-homotopy radius as a cover of a compact manifold is
complete. But by theorem 4.28 it cannot have a diameter bounded fundamental
group, because then Π1(Y ) would be finitely generated.

We now turn our attention to getting more qualitative coarse information
from our universal cover. It is one of the basic results of coarse geometry that
the fundamental group of a compact manifold is coarsely quasi-isometric to the
universal cover of the manifold in question. The result does not hold for general
length manifolds even with strictly positive null-homotopy radii and diameter
bounded fundamental groups, one needs just to look at the case of the cylinder
R × S1. But by studying this example and comparing it to the case of torus,
whose covering space the cylinder is, one notes that if we lift the fundamental
group of the torus to the cylinder, and the fundamental group of the cylinder to
R2, we ’lose’ something. This something is the part of the fundamental group of
the torus that is lifted to the ’whole height’ of the cylinder, and this ’height’ is
what we need to take into consideration in the general case. More specifically,
this height shows itself in the coarse theory in the fact that the cylinder has
non-zero growth rate. Thus half of the fundamental group of the torus goes
to the fundamental group of the cylinder, whose appearance on the cylinder
is bounded and without growth rate, and half of it goes to the growth rate
of the cylinder. To take these both to consideration we must in general start
to construct our coarse quasi-isometry by taking as the domain not just the
fundamental group, but the productM×Π1(M). To get the wanted mapping,
we look for the essential part of the standard coarse quasi-isometry ϕM from the
fundamental group of a compact manifold to the universal cover, and mimic it
to get the other ’half’ of the mapping. The result we now start to prove is quite
strong, so we also need to require some further constraints on the geometry of
the manifolds in question.

We wish to imitate the idea behind the mapping defined in remark 4.26.
The mapping itself is good, as it already gives us half of what we want, but
we want to expand the domain in question. Because lifting of paths is easy
under covering maps we want to represent the points in our manifold by paths.
Thus we will basically fix a point and choose for each point in the manifold a
geodesic connecting it to the fixed point. Now the manifold and fundamental
group appear as paths starting from a given point, so we may use the function
ϕM with an extended domain. We need first a few lemmas to further bind
together the geometric structures of a manifold and its fundamental group.

Suppose M is a length manifold with strictly positive weak null-homotopy
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radius rxnh at x. As rxnh > 0, we can define a ’norm’

ℓ∗ : Π1(M, x)→ R+, ℓ∗([ω]) = inf{ℓ(γ) | γ ∈ [ω]},

and via this norm a metric

dxℓ : Π1(M, x)→ R+, dxℓ ([α], [β]) = ℓ∗([←−α β]).

Definition 4.31. We say that a complete length manifold M with strictly
positive null-homotopy radius and a diameter bound fundamental group is ge-
ometrically homogeneous if the two following conditions hold.

(1) There exists a global constant L such that for any x ∈ M the metrics dxℓ
and dS of Π1(M, x) are L-bi-Lipschitz equivalent.

(2) For any fixed x0 ∈M, the set

G := {[α ∗ β ∗ γ] ∈ Π1(M, x0) | α : x0 gy x, β : x gy y, γ : y gy x0, x, y ∈M}

of geodesic triangles is finite.

If there exists a loop with smallest length in [ω] ∈ Π1(X,x), we denote by
ω∗ ∈ [ω] any loop such that ℓ(ω∗) = ℓ∗([ω]). If we have a weak diameter bound
Kx

Π for our fundamental group and [ω] ∈ Π1(X,x), we denote by ω∗ ∈ [ω] any
loop such that d(|ω∗|) ≤ Kx

Π.
Let M be a complete length manifold, x0 ∈ M a fixed point and x̃0 ∈

p−1
M{x0} ⊂ M̃. We define first

ϑ :M→ C([0, 1]), ϑ(x) : x0 gy x.

Note that geodesics on a length manifold are rarely unique, but here we just
pick a geodesic between x0 and x.

Furthermore we define

Θ:M→ M̃, Θ(x) = ϑ̃(x)(1),

where ϑ̃(x) is the lift of ϑ(x) starting from x̃0.

Lemma 4.32. Suppose x, y ∈M and [ω] ∈ Π1(M, x0). Then

d̃
(
(ω̃ ∗ ϑ̃(x))(1), (ω̃ ∗ ϑ̃(y))(1)

)
= d̃

(
ϑ̃(x)(1), ϑ̃(y)(1)

)
= d̃ (Θ(x),Θ(y)) .

Proof. The second equality is just the definition of Θ, so we concentrate on the
first one.

Let β : x gy y. Now there are two lifts of β,

β̃1 : (ω̃ ∗ ϑ̃(x))(1) gy (ω̃ ∗ ϑ̃(y))(1) and
β̃2 : ϑ̃(x)(1) gy ϑ̃(y)(1).

by definition of d̃, we must have ℓ̃(β̃1) = ℓ(β) = ℓ̃(β̃2), and this proves the
claim.

We now begin to construct our coarse quasi-isometry.
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Lemma 4.33. Let M be a geometrically homogeneous length manifold. There
exists a constant D > 0 such that

d(x, y)−D ≤ d̃(Θ(x),Θ(y)) ≤ d(x, y) +D.

Proof. Let x, y ∈M and let β : x gy y. We note that now the composition

σ := Θ(x) ∗ β ∗Θ−1(y)

is a geodesic triangle, so σ ∈ G. Moreover we see that as the loops σ ∗ ϑ(y) and
ϑ(x) ∗ β are homotopic, we must have

(
σ̃ ∗ ϑ̃(y)

)
(1) =

(
ϑ̃(x) ∗ β̃

)
(1).

By requirement (1) of definition 4.31 we see that ℓ∗([σ]) ≤ L‖[σ]‖S . As [σ] ∈ G
and G is finite by requirement (2) of definition 4.31, we also have that

ℓ∗([σ]) ≤ L‖[σ]‖S ≤ Lmax
g∈G
‖g‖S := C <∞.

Now by using triangle inequality we see that

d(Θ(x),Θ(y)) ≤ d(Θ(x), (ϑ̃(x) ∗ β̃)(1)) + d((ϑ̃(x) ∗ β̃)(1),Θ(y))

= ℓ(β̃) + ℓ∗([σ])

= ℓ(β) + ℓ∗([σ])

≤ dℓ(x, y) +D

and

d(Θ(x),Θ(y)) ≥ d(Θ(x), (ϑ̃(x) ∗ β̃)(1))− d((ϑ̃(x) ∗ β̃)(1),Θ(y))

= ℓ(β)− ℓ(σ̃)
≥ dℓ(x, y)−D.

This proves the claim.

Lemma 4.34. Let M be a geometrically homogenous length manifold and L
be a constant such that the metrics dS and dxℓ of Π1(M, x) are L-bi-Lipschitz
equivalent for any x ∈ M. Suppose K ∈ ]0, L−1[. Furthermore let x, y ∈ M
and [σ], [γ] ∈ Π1(M, x0) for some fixed x0 ∈M. Then the following hold.

(i) If ‖[←−σ ∗ γ]‖S ≤ Kdℓ(x, y) then

d̃(Θ(x), (←̃−σ ∗ γ̃ ∗ ϑ̃(y))(1)) ≥ (1−KL)dℓ(x, y)− C.

(ii) If ‖[←−σ ∗ γ]‖S ≥ Kdℓ(x, y) then

d̃(Θ(x), (←̃−σ ∗ γ̃ ∗ ϑ̃(y))(1)) ≥ (L−1 −K) ‖[←−σ ∗ γ]‖S −D.

The constant D is the one used in lemma 4.33. Note that by the choice of K
both coefficients (1−KL) and (L−1 −K) are strictly positive.
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Proof. We denote α :=←−σ ∗ γ.
To prove the first inequality we use triangle inequality, condition (1) of the

definition of a geometrically homogenous length manifold and our assumption:

d̃(Θ(x),Θ(y)) ≤ d̃(Θ(x), (α̃ ∗ ϑ̃(y))(1)) + d̃((α̃ ∗ ϑ̃(y))(1),Θ(y))

= d̃(Θ(x), (α̃ ∗ ϑ̃(y))(1)) + ℓ∗y([α])

≤ d̃(Θ(x), (α̃ ∗ ϑ̃(y))(1)) + L ‖[α]‖S
≤ d̃(Θ(x), (α̃ ∗ ϑ̃(y))(1)) + LKdℓ(x, y).

So by substracting LKdℓ(x, y) from this and noting that by lemma 4.33

d̃(Θ(x),Θ(y)) ≥ dℓ(x, y)−D

we see that

d̃(Θ(x), (α̃ ∗ ϑ̃(y))(1)) ≥ (1−KL)dℓ(x, y)−D

and this proves the first claim.
For the second claim we use condition (1) of the definition of a geometrically

homogenous length manifold, lemma 4.32, triangle inequality, lemma 4.33 and
our assumption.

L−1 ‖[α]‖S ≤ ℓ∗([α])
= d̃(x̃0, α̃(1))

= d̃(Θ(y), (α̃ ∗ ϑ̃(y))(1))
≤ d̃(Θ(x), (α̃ ∗ ϑ̃(y))(1)) + d̃(Θ(x),Θ(y))

≤ d̃(Θ(x), (α̃ ∗ ϑ̃(y))(1)) + dℓ(x, y) +D

≤ d̃(Θ(x), (α̃ ∗ ϑ̃(y))(1)) +K ‖[α]‖S +D,

So we see that

d̃(Θ(x), (α̃ ∗ ϑ̃(y))(1)) ≥ (L−1 −K) ‖[α]‖S −D.

Thus the second claim is also proved.

Theorem 4.35. Suppose M is a path length manifold with strictly positive
null-homotopy radius and a diameter bounded fundamental group. Then there
exists a coarse quasi-isometry

Ψ:M×Π1(M)→ M̃,

when the metric in the product is defined as

d((x, [α]), (y, [β])) = dℓ(x, y) + dS([α], [β])

Proof. Let x0 ∈M and x̃0 ∈ M̃.
We define

Ψ: (M, x0)×Π1(M, x0)→ M̃ Ψ(x, [σ]) =
(
σ̃ ∗ ϑ̃(x)

)
(1).

52



We wish to show that this mapping is a coarse quasi-isometry.
The image of Ψ is full in M̃, as we will see by showing that the mapping Ψ

is in fact surjective. For any x ∈ M̃ we take a path γ : x0 y x. Now

γ ∼ γ ∗ ϑ̃(pM(x)) ∗
←−−−−−−
ϑ̃(pM(x)).

Especially

x = Ψ(x, [γ ∗ ϑ̃(pM(x))]),

so the mapping Ψ is surjective.
We first see that by using the triangle inequality, the definition of Ψ, path-

conjugation lemma 4.32 and the definition of a geometrically homogeneous man-
ifold we have

d̃(Ψ(x, [σ]),Ψ(y, [γ])) ≤ d̃ (Ψ(x, [σ]),Ψ(y, [σ])) + d̃ (Ψ(x, [σ]),Ψ(y, [γ]))

+ d̃ (Ψ(x, [γ]),Ψ(y, [γ]))

≤ d̃
(
(σ̃ ∗ ϑ̃(x))(1), (σ̃ ∗ ϑ̃(y))(1)

)
+ d̃

(
(σ̃ ∗ ϑ̃(x))(1), (γ̃ ∗ ϑ̃(y))(1)

)

+ d̃
(
(γ̃ ∗ ϑ̃(x))(1), (γ̃ ∗ ϑ̃(y))(1)

)

≤ 2d̃
(
ϑ̃(x)(1), ϑ̃(y)(1)

)
+ d̃

(
(ϑ̃(x))(1), (←̃−σ ∗ γ̃ ∗ ϑ̃(y))(1)

)

= 2d̃(Θ(x),Θ(y)) + ℓ∗([←−σ ∗ γ])
≤ (2d(x, y)ℓ +D) + L ‖[←−σ ∗ γ]‖S
= 2dℓ(x, y) + LdS([σ], [γ]) +D

≤ Cd((x, [σ]), (y, [γ])) +D.

For the other inequality we use lemma 4.34 with constant K = (2L)−1.
(This means that (1−KL) = 1/2 and (L−1 −K) = L−1.)

Assume first that ‖[←−σ ∗ γ‖S ≤ (2L)−1dℓ(x, y). Now by the definition of Ψ
and lemma 4.33 we see that

d̃(Ψ(x, [σ]),Ψ(y, [γ])) = d̃
(
(σ̃ ∗ ϑ̃(x))(1), (γ̃ ∗ ϑ̃(y))(1)

)

≥ 1

2
dℓ(x, y)−D

=
1

4
dℓ(x, y) +

1

4
dℓ(x, y)−D

≥ 1

4
dℓ(x, y) +

1

L
‖[←−σ ∗ γ]‖S −D

≥ C ′d ((x, [σ]), (y, [γ]))−D.
In the case ‖[←−σ ∗ γ‖S ≥ (2L)−1dℓ(x, y). we have by the definition of Ψ,

definition of geometrically homogeneous manifold and lemma 4.33 that

d̃(Ψ(x, [σ]),Ψ(y, [γ])) = d̃
(
(σ̃ ∗ ϑ̃(x))(1), (γ̃ ∗ ϑ̃(y))(1)

)

= d̃
(
(ϑ̃(x))(1), (←̃−σ ∗ γ̃ ∗ ϑ̃(y))(1)

)

L−1 ‖[←−σ ∗ γ]‖S −D
= (2L)−1 ‖[←−σ ∗ γ]‖S + (2L)−1 ‖[←−σ ∗ γ]‖S −D
≥ C ′′d ((x, [σ]), (y, [γ]))−D.
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Combining these two we see that always

d̃(Ψ(x, [σ]),Ψ(y, [γ])) ≥ C−1d ((x, [σ]), (y, [γ]))−D.

In the cases where eitherM or Π1(M) is a point in the sense of coarse quasi-
isometry, we have the following corollaries that follow basically from corollary
3.24 that states that product with a bounded metric space does not affect the
coarse equivalence class.

Corollary 4.36. Let M be a bounded length manifold with a strictly positive
null-homotopy radius. Then the metric spaces M̃ and Π1(M) are coarsely quasi-
isometric.

Corollary 4.37. LetM be a compact length manifold. Then the metric spaces
M̃ and Π1(M) are coarsely quasi-isometric.

Corollary 4.38. Let M be a manifold with a strictly positive null-homotopy
radius and a finite fundamental group. Then the metric spaces M̃ and M are
coarsely quasi-isometric.

The following corollary follows from basic results of covering spaces, but we
state it here as a fun corollary to our coolest result.

Corollary 4.39. Let M be a simply connected manifold. Then the metric
spaces M̃ andM are coarsely quasi-isometric.
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5 BLD mappings

We have now defined the basic concepts we need and learned enough from their
structure to start working towards our main results. Especially we have enough
vocabulary to define BLD mappings and formulate their most important basic
properties. After this we are ready to apply our results.

5.1 Definition of a BLD-mapping

We begin by introducing our main object of study; a BLD-mapping between
manifolds. As was mentioned in the introduction of this thesis, BLD mappings
can be seen to be a continuous analogue to the quasiregular mappings of analysis.
As we are soon able to show, BLD mappings are Lipschitz quotient when the
domain is complete. But they also have the stronger property that the lift of a
BLD mapping is still a BLD mapping, a property not shared by coarse Lipschitz
quotient or Lipschitz quotient mappings. This allows BLD mappings to be able
to ’see’ more aspects of the growth rate of their domain than Lipschitz quotient
mappings.

Definition 5.1. Let M and N be two n-dimensional length manifolds. An
open, discrete, continuous mapping

f :M→N

is called a mapping of Bounded Length Distortion, or shortly a BLD-mapping if
the following path-length criterion is satisfied. Whenever γ is a rectifiable path
inM, then the path f ◦ γ is also rectifiable and we have that

1

L
ℓ (f ◦ γ) ≤ ℓ (γ) ≤ Lℓ (f ◦ γ)(2)

for some constant L ∈ R, L > 1.
If we wish to emphasize the constant L in the BLD-criterion, we may call

the mapping an L-BLD mapping.

Note that BLD mappings are defined only between manifolds of the same
dimension.

Remark 5.2. A BLD-mapping need not to be a local bi-Lipschitz map or even a
local homeomorphism. A classical example is to take the mapping f : R2 → R2,
which can be in polar coordinates defined as (r, ϑ) 7→ (r, 2ϑ). This mapping can
be seen to be a 2-BLD mapping, but it is not a local homeomorphism at the
origin. We shall later study the set of points at which a BLD map fails to be a
local homeomorphism. What we do have, however, is the following result.

Lemma 5.3. An L-BLD mapping f :M→ N between length manifolds is an
L-Lipschitz map.

Proof. Let x, y ∈ M and ε > 0. We can pick a rectifiable path γ : M → N
connecting these points with ℓ(γ) ≤ d(x, y) + ε. Now we see that the path f ◦ γ
connects the points f(x) and f(y). Moreover we have that

d(f(x), f(y)) ≤ ℓ(f ◦ γ) ≤ Lℓ(γ) ≤ L(d(x, y) + ε).

As this holds for any ε > 0, the mapping is L-Lipschitz.
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Our main quest is to give restraints to the existence of BLD mappings be-
tween manifolds. Our maybe most important concrete case is that of the exis-
tence of BLD mappings from Rn to a compact manifold. The following example
shows that this question comes void if we remove the requirement of openness
from the definition of a BLD mapping.

Example 5.4. Let us define a mapping f : R2 → [0, 1]× [0, 1], by setting

f(x, y) = ((−1)n(x− n), (−1)m(x−m)) ,

wherem,n ∈ Z are such that x ∈ [m,m+1[, y ∈ [n, n+1[. The map is generated
by folding the plane, as illustrated in figure 8. This mapping preserves path-

Figure 8: The mapping of example 5.4

length, as can be seen after a moments thought. It is not, however, open. The
problem with this mapping, at least from our point of view, is that we can
embed the square [0, 1]× [0, 1] to any manifold with dimension at least 2. Thus
the composition of f and this embedding would allow us to map the Euclidean
plane into any manifold with dimension at least 2. This means that the mapping
f is way too flexible to be interesting.

Theorem 5.5. The covering map pM : M̂ → M of a length manifold M is
1-BLD.

Proof. The covering map pM is continuous by definition, and the path-length
criterion is trivial as we have defined the path-length in M̂ to be such that pM
preserves rectifiable paths and path lengths exactly. To see that it is a discrete
mapping we take a point x ∈ M, pick for it a covering neighbourhood and
immediately we receive disjoint neighbourhoods for the points in p−1

M{x} which
shows that the set is discrete. To see that the mapping pM is open, let us pick
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an open set U ⊂ M̂. The mapping pM is a local homeomorphism, so each point
x ∈ U has a neighbourhood Vx such that Vx ⊂ U and pM|Vx

→ pM [Vx] is a
homeomorphism. Especially the sets pM [Vx] are open, and thus the set pM[U ]
is open as a union of the open sets pM [Vx].

This means that the covering map is 1-BLD.

5.2 Basic properties of discrete open continuous mappings

We shall need a few basic properties of BLD mappings later. In this section we
prove some of them in their natural setting which is the situation of discrete
open continuous mappings. Note that by our definition BLD mappings are
always discrete, open and continuous. In this section and here alone we will be
using results and terminology only used in appendix A.

In this section all discrete open mappings are assumed continuous.

Definition 5.6. The branching set Bf of a mapping f is defined to be the set

Bf = {x ∈M | The mapping f is not a local homeomorphism at x.}

i.e. it is the set in which the mapping f fails to be a local homeomorphism.

Note that it follows directly from the definition that the branching set is
closed, for if f is a local homeomorphism at x ∈ M, then it is clearly a local
homeomorphism is some neighbourhood of x. We state the following theorem
proved by J. Väisälä in [Väi66] and its important corollary.

Theorem 5.7. Suppose f is a discrete open map between two n-dimensional
manifolds. Then the branching set of f has topological dimension at most n−2.

Remark 5.8. A BLD mapping is always Lipschitz by lemma 5.3, and thus we
have also dim f [Bf ] = 0 by basic properties of topological dimension.

Corollary 5.9. The branching set of a open discrete map or its image under
the same map cannot separate any two points on a manifold.

Remark 5.10. Note that the only set with topological dimension −1 is the empty
set, so a open discrete mapping between 1-dimensional manifolds is always a
local homeomorphism.

We next need to show that paths can be lifted under open discrete maps.
The idea behind the following results (lemma 5.11 and theorem 5.12) is from
the proof of similar theorem found in [Ric93, Theorem 3.2., p.33]. In Rickman’s
book this theorem is proved for mappings between domains of Rn in a more
general case which states that we can actually obtain a maximal amount of the
pre-image of the path. We do not need such a strong result, so we shall prove
the lemma separately.

The following proof is not only a restriction of Rickman’s proof because in
his theorem he assumes the mapping to be orientation-preserving between ori-
entable manifolds. We do not need such assumptions. It suffices to have a open
discrete mapping between manifolds as we need results concerning orientability
only locally and manifolds are always locally orientable. The ’full version’ of
[Ric93, Theorem 3.2., p.33] could also be proven without orientable manifolds
or maps with a similar proof as the one in this section.
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In addition to all this, we prove a nice corollary of this theorem for BLD
mappings with a complete domain. In this case we can have the whole path
lifted and not just a maximal lift that we would have in the general case.

We first agree on some terminology. Let f : X → Y be a continuous mapping
between two topological spaces and γ : [0, 1] → Y a continuous path. We say
that the path γ can be lifted locally by f , if the following holds. For any y :=
γ(ty) ∈ |γ|, x ∈ f−1{y} there exists a path α : [a, b] → X such that α(a) = x,
b > a and f ◦ α = γ|[ty,tb] for some tb > ty.

The following lemma has been detached from the proof given by Rickman
into a separate entity to clarify the idea behind the proof.

Lemma 5.11. Let M and N be manifolds with f :M → N an open discrete
map between them. If a path γ : [0, 1]→ f [M] can be lifted locally by f , then it
has a maximal lift via f starting from any point f−1{γ(0)}.

Furthermore, suppose f :M → N is a BLD mapping between length man-
ifolds and that M is complete. Then any rectifiable path in f [M] has a total
lift.

Proof. Assume x0 ∈ M, and that γ : [0, 1]→ f [M], γ(0) = f(x0). We want to
find a maximal lift with this root x0.

Let us define Z to be the set of all paths γα : Iα →M such that for all α we
have that Iα is a subinterval of [0, 1] containing the element 0, γα(0) = x0 and
γ|Iα = f ◦ γα. We define a partial order ≤ in the set Z by setting γα ≤ γβ , if
Iα ⊂ Iβ and γβ |Iα = γα. The set Z is nonempty as we have a local lift by our
assumption.

We see that if we take any ordered subset A of the set Z, we find an upper
bound of this set by taking I0 =

⋃{Iα | γα ∈ A} and defining γ0 : I0 → M,
γ0(t) = γα(t), when t ∈ Iα. This upper limit is well defined by the definitions
of our partial order and the set A. But as an arbitrary ordered subset of Z has
an upper bound, we have by Zorn’s lemma that the partially ordered set (Z,≤)
has a maximal element γ̂ : I →M.

If I = [0, t0] for some 0 < t0 < 1, we could take a neighbourhood of the point
γ̂ and lift the path γ further by our assumption. But this would contradict the
maximality of the path γ̂ in the set Z. Thus the only possibility is that I = [0, 1]
or I = [0, t[ for some 0 < t < 1. This is our maximal lift.

What we still need to show in the case of a BLD mapping between length
manifolds and a complete domain we have I = [0, 1] if the path γ is rectifiable.
By the previous argument the interval I can contain the rightmost endpoint if
and only if I = [0, 1]. If we would have that I = [0, t0[ for some 0 < t0 < 1, we
could pick a sequence (an) from I such that limn→∞ an = t0. We note as γ is
rectifiable, we can use the path length criterion of f to see that

ℓ(γ̂) ≤ Lℓ(f ◦ γ̂) = Lℓ(γ) <∞.

This means that γ̂ is also rectifiable, so we have that

∞∑

k=1

d(γ̂(ak), γ̂(ak+1)) ≤
∞∑

k=1

ℓ(γ̂|[ak,ak+1]) = ℓ(γ̂) <∞,(3)

and so the sequence γ̂(an) has to also be a Cauchy sequence because otherwise
the leftmost sum in (3) would not converge. Especially the sequence γ̂(an)
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converges as M was assumed to be complete. So as limn→∞ γ̂(an) = a ∈ M,
we can extend γ̂ to [0, t0] by continuity of the mapping f . This would contradict
the maximality of γ̂, so the interval I can not be half-open and this proves the
claim.

Note that in the last part of the proof we did not use the full power of
the BLD criterion, just the fact that a BLD mapping maps rectifiable paths to
rectifiable paths.

In the proof of the following theorem we rely heavily on the results proven
in the appendix A. The proof of the following theorem is the only part (not
counting the proof of 5.7) of this thesis that requires the cohomological results
of the appendix. We also use terminology of orientation and topological index
i(x; f) that is defined only in the mentioned appendix.

Theorem 5.12. Let f : M → N be a mapping between two manifolds. If
β : I → f [N ] is a path, then there exists a path β̃ : I → M such that f ◦ β̃ = β
with any given starting point x0 ∈ f−1β(0).

The path β̃ is called the f -lift of β, and is not usually unique.

Proof. By lemma 5.11 we only need to show the existence of a local lift. We
actually show a bit stronger claim: Every point x ∈M has a neighbourhood A
such that any path γ : [0, 1]→ f [A] can be locally lifted under f |A. We first pick
a chart-neighbourhood V homeomorphic to Rn for the point f(x0). This neigh-
bourhood will especially be orientable. Next we pick a chart-neighbourhood U
for x0 such that U ⊂ f−1[V ]. Now f |U : U → V is a discrete open mapping
between oriented manifolds. By choosing the orientations properly, we see can
have f |U orientation-preserving, and by notions in appendix, we can have U so
small (by taking it to be precompact) that the index is defined for all points in
V . In the following we abuse notation by writing f instead of f |U .

We shall prove the claim by induction over the index i(x; f) of f in x.
Base step: If i(x; f) = 1, then the mapping f is an injection in a neighbour-

hood U of this point and as such a local homeomorphism. Thus we can define
for any path β : [0, 1]→ f [U ] a lift β̃ : [0, 1]→ U by setting β̃ = f−1 ◦ β.

Inductive step: Assume the claim holds for any point x with 1 ≤ i(x; g) < r,
where r ∈ N. Moreover, let us assume that i(x0; f) = r for x0 ∈ U .

As x 7→ i(x; f) is upper semicontinuous by lemma A.14 we may assume that
the neighbourhood U is so small that i(x; f) ≤ r for all x ∈ U . Let us denote

F = {z ∈ U | i(z; f) = r} .

By lemma A.13 we know that the f |F is injective as U was chosen small
enough. This means that for any path γ : [0, 1] → f [M] we have for each
t ∈ γ−1f [F ] a unique xt ∈ U such that f(xt) = γ(t). So the part of the path γ
that lies in f [F ] lifts uniquely. Now we only need to ’fill in the gaps’.

Again by the upper semicontinuity of the function x 7→ i(x; f), we know
that the set F is closed in the set U . Because U was assumed precompact, f |U
is a closed mapping, so f [F ] is closed in f [U ]. This means that for any path
γ : [0, 1]→ f [M] the set γ−1 [f [U ] \ f [F ]] is a union of countably many disjoint
intervals ]aλ, bλ[, λ ∈ N.

Let us fix the path γ for a moment. For each λ we pick cλ ∈ ]aλ, bλ[,
and set γλ = γ|[cλ,bλ[ and γ′λ = γ|]aλ,cλ]. The mapping g = f |U\F meets the
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assumptions in the inductive step, so we know that we may lift locally any path
α : [a, b] → f [U ] \ f [F ] to a path in U . But this especially means that both
γλ and γ′λ can be lifted. (Strictly speaking our induction hypothesis only deals
with paths from a closed interval, but we can approximate the half open interval
with closed subintervals and lift the paths restricted to those to get the lift.)

Now we note that by continuity we must have that limt→bλ γλ(t) ∈ f [F ] and
limt→aλ

γ′λ(t) ∈ f [F ], so we may now define our lift as a composition of lifts in
intervals ]aλ, cλ[ and on γ−1f [F ].

With path-lifting we are able to prove the following useful theorem.

Theorem 5.13. Let M and N be length-manifolds and f : M → N a BLD
mapping. IfM is complete, then f is surjective.

Proof. Assume there exists a point y ∈ N \ Im(f). Let us take a point x ∈ M
and connect points f(x) and y with a rectifiable path γ : [0, 1]→ N , γ(0) = f(x),
γ(1) = y. Define

t0 := sup{t ∈ [0, 1] | γ([0, t]) ⊂ Im(f)},

and note that we must have γ(t0) /∈ Im(f) as the mapping f was supposed open,
so especially Im(f) has to be open.

Let us take a sequence (an) from [0, t0[ that converges to t0. By previous
theorem, the path γ[0,t0[ lifts to a path γ̂ : [0, t0[→ M. Because the path γ̂ is
rectifiable, the sequence (bn), bn = γ̂(an) has to be a Cauchy sequence. Because
we assumed the domain to be complete, the sequence must converge to a point
b ∈ M 5. But this would enable us to continue the lift of the path γ to the
interval [0, t0], which would by continuity force us to have f(b) = γ(t0), which
is a contradiction.

5.3 Growth-rate properties of BLD-mappings

We are now prepared with enough auxiliary results to start formulating and
proving our main theorems concerning the non-existence of BLD mappings be-
tween manifolds in certain situations. Most of the results will be acquired by
noting that BLD mappings are always Lipschitz quotient maps and using the-
orem 3.47 that restricts the existence of coarse Lipschitz quotient mappings by
comparing growth rates.

The proof of the following theorem bears some resemblance to the proof of
theorem 4.18. Connection between BLD and Lipschitz quotient mappings (with
slightly different definitions) has been studied in [HR02].

Theorem 5.14. Suppose M and N are two length manifolds and let M be
complete. Then a BLD mapping f :M→N is Lipschitz quotient.

Proof. Let x0 ∈M. We will show that for any r > 0

B
(
f(x0),

r

L

)
⊂ f

[
B
(
x0, r

)]
⊂ B

(
f(x0), Lr

)
,

where L is the BLD-constant of f . Remember that f is surjective by theorem
5.13.

5This was done explicitly in the proof of lemma 5.11.
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The second inclusion is easy, as we have already seen that an L-BLD mapping
is always an L-Lipschitz mapping.

For the first inequality, let us assume the contrary; there exists a point

y0 ∈ B
(
f(x0),

r

L

)
\ f
[
B
(
x0, r

)]
.

Because y0 ∈ B
(
f(x0),

r
L

)
, there exists a path γ in N connecting the points

f(x0) and y0 with ℓ(γ) < r
L
. Because the mapping f is surjective, the path γ

can be lifted by lemma 5.11. Thus we have a lifted path γ̃ : [0, 1] → M such
that f ◦ γ̃ = γ.

Now we see that as γ(0) lies in the interior and γ(1) in the exterior of
f
[
B
(
x0,

r
L

)]
, we must have that γ̃(0) lies in the interior and γ̃(1) lies in the

exterior of B
(
x0, L

)
. Thus by continuity of γ̃ there exists a point y ∈ |γ̃| ∩

∂ B
(
x0, L

)
. Let t ∈ [0, 1] be a point such that γ̃(t) = y, and let us denote

γ̃1 = γ̃[0,t].

But now as γ̃(t) ∈ ∂ B
(
x0, L

)
, we must have that ℓ(γ̃1) ≥ r. On the other

hand by the BLD criterion for f we have that

ℓ(γ̃1) ≤ ℓ(γ̃) ≤ Lℓ(f ◦ γ) + 0 = Lℓ(γ) < L
r

L
= r,

so r ≤ ℓ(γ) < r. This is a contradiction, so the original claim holds true.

Theorem 5.15. LetM and N be two path-metric manifolds,
(
M̂, pM

)
,
(
N̂ , pN

)

their respective covers and f :M→N an L-BLD mapping. If a lift f :M→ N̂
exists, it is also an L-BLD mapping.

If the double lift
≈
f : M̂ → N̂ exists it is also an L-BLD mapping. Especially

BLD mappings always lift to BLD mappings between universal covers.

Proof. As the double lift f is by definition a lift of the composition of a f and a
covering map, it will suffice to show that a lift of a L-BLD mapping is L-BLD
and that the composition f ◦ pM : M̂ → N is an L-BLD map.

Let γ : [0, 1]→M be a rectifiable path and assume there exists a lift of f to

to covering space (M̂, pM) ofM. We note that by the definition of path length
in covers we have

ℓM̂(f̃ ◦ γ) = ℓM(pM ◦ f̃ ◦ γ) = ℓM(f ◦ γ),

so the path-length criterion is satisfied for f̃ exactly when it is satisfied for
f . We also note that as pM is a local homeomorphism, we can locally write
f̃ = f ◦ (pM|U )−1

for a suitable U . This means that f̃ is continuous and open
exactly when f is, as these are both local properties. Finally we note that if we
pick any point x ∈ M̂, we have that f̃−1{x} ⊂ f−1{pM(x)} and as a subset of

a discrete set is always discrete we see that the mapping f̃ is a discrete map.
Next we show that f ◦pM is L-BLD. We have already showed in theorem 5.5

that the covering map pM and is 1-BLD. The composition of two open continu-
ous functions is open and continuous, so we only need to show discreteness and
the path-criterion for the mapping f ◦ pM. Let γ : [0, 1] → M̃ be a rectifiable
path. As the mapping pM is 1-BLD, the path pM ◦ γ is still rectifiable as is
(f ◦ pM) ◦ γ. Moreover

1

L
ℓ (γ) ≤ 1

L
ℓ (pM ◦ γ) ≤ ℓ (f ◦ pM ◦ γ) ≤ Lℓ (pM ◦ γ) ≤ Lℓ (γ) .
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Thus the function f ◦ pM satisfies the path-criterion.
Let now y0 ∈ N . The set f−1{y} is discrete as f is. We wish to show that

the set p−1
M

[
f−1{y}

]
is also discrete, but this actually follows immediately from

the fact that the mapping pM is a local homeomorphism.

Theorem 5.16. LetM be a length manifold and f : Rn →M a BLD mapping.
ThenM is weakly doubling.

Proof. We know theorem 5.14 that f is a Lipschitz quotient. This means that
there exists constants C and r0 such that

B
(
f(x), C−1r

)
⊂ f

[
B
(
x, r
)]
⊂ B

(
f(x), Cr

)

for all r ≥ r0, x ∈ Rn.
Suppose B

(
y,R

)
⊂M, and that there is a collection B of disjoint balls with

radius r < R within the ball B
(
y,R

)
. Now there exists a ball B

(
x,CR

)
⊂ Rn

whose image under f covers B
(
y,R

)
. For each ball B in B we find a smaller

ball with radius C−1r from Rn that is mapped within B. These small balls in
Rn are all disjoint by their definition, so we have an upper bound to the amount
of elements in B inherited by the weakly doubling constant of Rn.

5.4 Main results

Next we look some ways to apply our result. The following give restrictions to
the existence of BLD mappings between certain manifolds by noting that BLD
mappings induce Lipschitz quotient mappings between their respective universal
covers when the domain is complete. Moreover these Lipschitz quotient map-
pings can be composed with coarse quasi-isometries to produce coarse Lipschitz
quotient maps between any metric spaces that are coarsely quasi-isometric to
the respective universal covers (see figure 9). An important example of such
metric spaces is given by theorem 4.35 that tells that under good enough as-
sumptions the product M× Π1(M) is coarsely quasi-isometric to M̃. From
these we get nice corollaries in the cases when one of the factors in the product
disappears in a coarse sense.

We state our main results with respect to the growth classes of length man-
ifolds. In next section we shall take advantage from the results that give us
information on whether or not there exists minimal elements in the growth
class of a metric space. In this section we shall by Ord∗(X) ≥ Ord∗(Y ) mean
that for any net S in X we find a net P in Y such that Ord(S) ≥ Ord(P ).

The following is our generalized Varopoulos type result:

Theorem 5.17. LetM and N be length manifolds withM complete. Suppose
there exists a BLD mapping f :M→N . Then

Ord∗(M) ≥ Ord∗(N ) and(4)

Ord∗(M̃) ≥ Ord∗(Ñ ).(5)

Moreover, whenever the mapping f lifts between covers M̂ and N̂ ofM and
N , respectively, we must have Ord∗(M̂) ≥ Ord∗ N̂ .
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Figure 9: The fundamental idea behind our main results.

Proof. A BLD mapping f :M→ N from a complete manifold is always Lips-
chitz quotient by theorem 5.14. By theorem 3.47 this means that Ord∗(M) ≥
Ord∗(N ).

By theorem 5.15 any lift of a BLD mapping f : M → N is still a BLD
mapping. This implies the rest of the claim.

Theorem 5.18. Let f :M→ N be a BLD mapping between length manifolds
withM complete. If X and Y are metric spaces that are coarsely quasi-isometric
toM and N , respectively, we must have Ord∗(X) ≥ Ord∗(Y ).

Proof. This follows from the fact that the mapping f̂ : X → Y acquired by
conjugating the mapping f with the given coarse quasi-isometries is coarse Lip-
schitz quotient by theorem 3.45, and by theorem 3.47 we must have Ord∗(X) ≥
Ord∗(Y ).

Corollary 5.19. Let M and N be length manifolds such that M is complete.
Suppose there exists a BLD mapping f :M→N .

a) If N is geometrically homogeneous, then Π1(N ) is finitely generated, and we
must have

Ord∗(M̃) ≥ Ord∗(Ñ ) = Ord∗(N ×Π1(N ))

b) If M is geometrically homogeneous, then Π1(M) is finitely generated, and
we must have

Ord∗(Ñ ) ≤ Ord∗(M̃) = Ord∗(M×Π1(M))

c) If M and N are both geometrically homogeneous, then Π1(M) and Π1(N )
are finitely generated, and we must have

Ord∗(M×Π1(M)) ≥ Ord∗(N ×Π1(N ))

Furthermore, suppose a manifold X is weakly doubling and has a finitely gener-
ated fundamental group. Then the product X × Π1(X) is also weakly doubling
and we can calculate the growth of a product by product of growths:

Ord(X ×Π1(X)) = Ord(X) ·Ord(Π1(X)).
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5.5 Changing between metrics

We have shown thus far all our results in the case where the metric used is
a path-metric. We wish now to check how much the metric can be changed
without our theorems coming void. This is a very natural question, as for
different metrics our non-existence -results change dramatically. There is, for
example, no BLD mapping from R2 to a genus 2 surface as we soon show. We
can, however map the open unit ball onto a genus 2 surface with a BLD map
even though the unit disk and the plane are homeomorphic and either one can
be given a metric with which they are even isometric.

We shall next formulate and prove a result that states that our results still
hold if we change our path-metric into another metric that is bi-Lipschitz-
equivalent with the original metric.

Theorem 5.20. Let f(M, d)→ (N , d′) be a BLD mapping between two length
manifolds. Suppose we change metrics d and d′ into bi-Lipschitz-equivalent
metrics d̂ and d̂′, respectively. Then the mapping f : (M, d̂)→ (N , d̂′) is still a
BLD mapping.

Proof. Continuity, discreteness and openness are topological properties and are
not affected by the change into an topologically equivalent metric. Checking
the path-length criterion requires a bit more work.

Remember from definition 4.2 that we can equip any path-connected metric
space with some sort of path-length structure. If we use this method to a length
manifold we receive the same length structure we already had. So if d and d̂ are
L-bi-Lipschitz-equivalent, then for all partitions (a1, . . . , an) of the unit interval
we have that

1

L

n−1∑

i=1

d̂ (γ(ai), γ(ai+1)) ≤
n−1∑

i=1

d (γ(ai), γ(ai+1)) ≤ L
n−1∑

i=1

d̂ (γ(ai), γ(ai+1)) ,

so especially

1

L
ℓ
d̂
(·) ≤ ℓd(·) ≤ Lℓd̂(·).

From this we also see that the set of rectifiable paths does not change under the
change of the metric.

Let us denote by L the BLD constant of f with respect to the metrics d and
d′, by K1 the constant that represents the bi-Lipschitz change of metric d to d̂,
and by K2 the constant associated with the change d′ 7→ d̂′. Now we see that by
using this length-preservance of bi-Lipschitz metric change, the BLD property
of f with respect to the metrics d and d′, and then again the length-preservance
of bi-Lipschitz metric change we have that

ℓ
d̂′(f ◦ γ) ≤ K1ℓd′(f ◦ γ) ≤ LK1ℓd(γ) ≤ K2LK1ℓd̂(γ)

and

ℓ
d̂′(f ◦ γ) ≥

1

K1
ℓd′(f ◦ γ) ≥ 1

LK1
ℓd(γ) ≥

1

K2LK1
ℓ
d̂
(γ).

Thus we have that with respect to the new metrics d̂ and d̂′ the mapping f is
a (K2LK1)-BLD mapping.
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By imitating the proof of the previous theorem, one easily sees that also the
concepts of growth rate, weakly doublingness, null-homotopy radius, diameter
bound and homogeneous geometry are practically invariant under bi-Lipschitz
changes of metrics.

5.6 Concrete examples

We now turn to some concrete applications of our theorems. In this section we
give fewer details and use less rigor as we wish to concentrate on giving ideas
about what kind of things our theorems can be used to prove.

We showed in theorem 3.25 that Rn is weakly doubling, so it has a unique
growth rate. It is easy to calculate that the growth of the 1-net Zn of Rn has
growth rate O(xn). Thus Ord(Rn) = O(xn). Moreover, if we have a BLD
mapping f : Rn →M, thenM is weakly doubling and its growth rate is easy to
calculate. Also remember that all finitely generated groups are weakly doubling
1-nets, so their growth rates are unique and easy to calculate.

Example 5.21. Suppose N is a compact n-dimensional length manifold and
Ord(Π1(N )) ≥ O(xd) where d > n. Then there exists no BLD mapping from
Rn to N .

Example 5.22. Suppose N is a compact n-dimensional length manifold and
Ord(Π1(N )) ≥ O(xd) where d > n. Then there exists No BLD mapping from
Rn+k to Rk ×N .

Example 5.23. There cannot exist a BLD mapping from a compact length
manifold to an unbounded length manifold.

Let M and N be two n-dimensional manifolds. The surgery of these two
is denoted by M#N and denoted as follows. Take two sets UM ( M and
UN ( N homeomorphic to the Euclidean n-dimensional unit ball. (Such sets
exist as M and N are manifolds.) We remove these sets from the respective
manifolds and take a cylinder [0, 1] × S1. Now we ’glue’ the ends {0} × S1 to
∂UM and {1} × S1 to ∂UN . The result is a join of the two original manifolds.

IfM and N are weakly doubling, then so isM#N , and if O(f) ≥ Ord(M)
and O(f) ≥ Ord(N ), then O(f) ≥ Ord(M#N ).

The following could be called a weak Jormakka type result.

Example 5.24. LetM and N be two length spaces. If

Π1(M) 6= {0} 6= Π1(N ) 6= Z2,

Then M#N contains a free group spanned by two elements and there is no
BLD mapping R3 →M#N .

We can have strict inequalities in our growth rate changes as the following
inequalities show.

Example 5.25. We can map both the torus and the plane to S2.

Example 5.26. There exists a BLD mapping from an orientable genus two
surface to torus.
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Example 5.27. The completeness assumption is essential, as we note that we
can map the bounded simply connected manifold ]0, 1[×]0, 1[ subjectively to the
open annulus B

(
0, 2
)
\B(0, 1) via stretching and the complex exponential map.

This shows that the requirement of a complete domain is indispensable as the
universal cover of the annulus has linear growth rate, even though the domain
is bounded. (In general, BLD mappings with non-complete domains need not
be surjective and our arguments concerning growth rates fail.)

Example 5.28. LetM be a length manifold, and M̂ its cover. Then Ord∗(M) ≤
Ord∗(M̂) as the covering map is a BLD mapping.

A dual statement that follows from the fact that fundamental groups of
covering spaces of a manifoldM are subgroups of Π1(M) is the following. Let

M be a manifold with a finitely generated fundamental group and M̂ its cover
such that Π(M̂) is finitely generated. Then Ord∗(Π1(M)) ≥ Ord∗(Π1(M̂)).

From previous statements we know the following. LetM be a geometrically
homogeneous manifold and M̂ its cover. Then

Ord∗(M×Π1(M)) = Ord∗(M̂ ×Π1(M̂)).

If the manifoldM also is weakly doubling we have

Ord(M)Ord(Π1(M)) = Ord(M̂)Ord(Π1(M̂)).
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A Cohomology and topological index

In this appendix we go first through a short exposition of singular cohomology
with compact supports to be able to give some basic results of index theory.
The definition of singular cohomology with compact supports is standard, and
can be found in any basic book dealing with cohomology theory. We also give
references to sources that tell us that the choice of a specific cohomology theory
is irrelevant for a manifold.

A.1 Singular cohomology of topological spaces with com-

pact supports

We need a lemma (lemma A.13) that gives us local injectivity of a the restric-
tion of an open discrete map to its branching set in section 5.2 when proving
Rickman’s theorem (theorem 5.12) concerning the lifting of paths under open
discrete mappings. To prove this we need to prove some index theorems, which
in turn require (local) topological orientation. To define topological orientation
some sort of homology- or cohomology theory must be defined. We will in this
thesis go with cohomology theory, for the index theorem we need is natural to
prove in this setting. By for example [Spa66, Corollary 7, p. 341], [Spa66, Corol-
lary 8, p. 334] or [War83, Theorem 5.23, p. 181] we know that for manifolds the
choice of a specific cohomology theory does not make any difference. We shall
use the so called singular cohomology with compact supports because the defi-
nition is dual to the definition of a singular homology theory which happens to
be a quite natural and mechanically of not too complex structure. We give next
the definition and the most important basic properties of singular cohomology
with compact supports (and on the way we will also come to define singular
homology and singular cohomology without compact supports). The form of
the definitions is motivated by [Hat02].

We first define an abstract concept of a homology of a chain complex. Then
we construct suitable chain complexes to obtain the required structures.

Definition A.1. A chain complex C is a sequence of abelian groups Cn, n ∈ Z

· · · ∂n+2

Cn+1
∂n+1

Cn

∂n
Cn−1

∂n−1 · · ·

together with boundary mappings ∂n : Cn → Cn−1 such that Im ∂n+1 ⊂ Ker ∂n
for all n ∈ Z.

The homology groups of this complex are defined as the quotient groups

Hn(C) := Ker ∂n
/
Im ∂n−1 .

Definition A.2. Let C be a chain complex, and let G be an abelian group. The
cochain complex of C with coefficients in G is the chain complex

· · · Cn+1
δn+1

Cn
δn

Cn−1
δn−1

· · ·
δn+2

,

where

Cn = Hom(Cn, G) := {g : Cn → G | g is a homomorphism } ,
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and the mappings δn are defined by δn(f) = f ◦ ∂n+1.

Cn+1
∂n+1

δnf :=f◦∂n+1

Cn

f

G

The structure of a cochain complex can be seen in picture 10.
The homology of the cochain complex with coefficients in the group G is

called the cohomology of the original chain complex and denoted H∗ (C;G).

Cn+1 Cn Cn−1

· · · ∂n+2

Cn+1
∂n+1

Cn

∂n
Cn−1

∂n−1 · · ·

G G G
δn δn−1

Figure 10: Structure of the cochain complex.

We next define a chain complex from which we can extract the singular
homology theory and from its cochain complex the singular cohomology theory.
To construct all this we need first some basic concepts.

A standard n-simplex is defined to be

∆n =
{
(t0, . . . , tn) ∈ Rn+1 |

n∑

i=0

ti = 1, ti ≥ 0 for all i
}
.

An n-simplex is a pair (S, ψ) with S a topological space and ψ : ∆n → S a
homeomorphism. The k-face of a n-simplex S, k ≤ n + 1, with ψ : ∆n → S as
a homeomorphism is the set

ψ
[{
(t0, . . . , tn) ∈ Rn+1 |

∑

i

ti = 1, ti ≥ 0 for all i, tk = 0
}]

and it is a (n − 1)-simplex in a natural way. The k-face of a standard n-
simplex we denote by [v0, . . . , v̂k, . . . , vn]. The vertexes of an n-simplex S, with
ψ : ∆n → X as a homeomorphism, are the points vj = ψ

(
(0, . . . , 1︸︷︷︸

i:th

, . . . , 0)
)
.

We say that an n-simplex (S, ψ) is an n-simplex of a space X if S ⊂ X.
We call any ordering of the vertexes of an n-simplex an orientation. This

ordering is inherited to the faces by a restriction of the orientation. For example
the orientation of the k-face of an n-simplex with the orientation

(vi1 , . . . , vik , . . . , vin)

is just
(vi1 , . . . , vik−1

, vik+1
, . . . , vin).
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A singular n-simplex of a topological space X is any continuous mapping
f : ∆n → X. We denote by CS

n (X) the free Z-module generated by all singular
n-simplexes of a topological space X. We make the identification

(v1, . . . , vi, . . . , vj , . . . , vn) = −(v1, . . . , vj , . . . , vi, . . . , vn).

The module CS
n (X) forms a chain complex when we define the boundary oper-

ators ∂n by setting

∂n(f) =

n∑

k=0

(−1)kf |[v0,...,v̂k,...,vn](6)

for each singular n-simplex f .

Definition A.3. The singular chain complex of a topological space X, denoted
CS(X), is the chain complex constructed from the groups CS

n (X) and the map-
ping defined by (6). Its homology is called the singular homology of the space
X and it is denoted H∗(X). The elements of the groups in the singular chain
complex are called chains.

Definition A.4. The singular cohomology of a topological space X with coef-
ficients in an abelian group G is the cohomology of the singular chain complex
CS(X), and it is denoted H∗ (X;G).

The groups forming the cochain complex are denoted by Cn
S (X;G) and their

elements are called cochains.

Definition A.5. Let C̃n
S (X;G) ≤ Cn

S (X;G) be the subgroup that consists of
those mappings ϕ : Ci(X) → G for which there exists a compact set Kϕ ⊂ X
such that ϕ is zero on all chains that lie in X \Kϕ.

From these subgroups we acquire a ’subchain complex’ of the singular cochain
complex and the homology of this chain complex is called the singular cohomol-
ogy with compact supports of the space X and it is denoted by H∗

c (X;G).

Definition A.6. Let f : X → Y be a continuous proper mapping between
topological spaces. The pullback of f with respect to the singular cohomology
with compact supports is the mapping f∗ : Hn

c (Y )→ Hn
c (X) defined as follows.

If ξ ∈ [ω] ∈ Hn
c (Y ), and g ∈ Cn(Y ), then (f∗ξ)(g) = ξ(f ◦ g). This induces a

well-defined mapping between the cohomology groups with compact supports.
If we have an inclusion ι : A →֒ U , we define also the push-forward

ι : Hn
c (A)→ Hn

c (U)

by setting

(ι∗ξ)(g) =

{
ξ(g), if Im(g) ⊂ A,
eG, otherwise.

for all singular n-simplexes. (This uniquely determines ι∗ξ and thus the whole
of ι∗. This also induces a well-defined mapping between the cohomology groups
with compact support.)
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A.2 Topological index

In this section Hn
c (M) will mean at all times the compactly supported singular

cohomology of the spaceM with coefficients in Z. The degree n in the notation
Hn

c (M) is assumed to equal the dimension of the manifoldM. All proper maps
are assumed also continuous.

Our formulation for the definition of a topological index will follow the expo-
sition given in [Väi66]. We will first define the concept of topological orientation
on a manifold and then continue with the (local) topological index for orientable
topological manifolds. The requirement causes no problems for us, as we need
orientability only locally in and every manifold is locally orientable. (This can
be seen for example by looking at the chart-neighbourhoods.)

We know for example by [Spa66] that for all manifolds we have either
Hn

c (M) = Z or Hn
c (M) = Z2. these cases will be called the orientable- and

the non-orientable case, respectively. From now on all manifolds are assumed
orientable, and a spanning element µM ofHn

c (M) is called an orientation of the
manifold. The following lemma allows us to orient all domains of our oriented
manifold consistently. Proof can be found from [Spa66].

Lemma A.7. Let M be an n-dimensional orientable topological manifold and
U ⊂M a domain. The mappings induced be the inclusion ι : U →֒ M,

ι∗ : H
n
c (U)→ Hn

c (M) and ι∗ : Hn
c (M)→ Hn

c (U) ,

are isomorphisms.

For any domain U of a manifoldM we give an orientation via the mapping
ι∗ : Hn

c (M) → Hn
c (U) induced by the inclusion ι : U →֒ M by setting µU :=

ι∗(µM).
If we have a proper map f : (M, µM)→ (N , µN ) between oriented manifolds

it induces a homomorphism between the compactly supported cohomologies
f∗ : Hn

c (N ) → Hn
c (M). As these are isomorphic to Z with µN and µM as

spanning elements, we must have f∗(µN ) = kµM for some k ∈ Z. We will
say that f is orientation preserving if k ≥ 0, otherwise we will say that it is
orientation reversing.

We now turn to the index of a continuous open discrete mapping. Let
f :M→N be a continuous open discrete mapping. Given a domain U ⊂M, a
point y ∈ N is called (f, U)-admissible if there is a connected neighbourhood V
of y such that f defines a proper mapping fp := f |U∩f−1[V ] : U ∩ f−1[V ] → V .
(We need proper mappings in order to get well-defined pull-back mappings be-
tween the compactly supported cohomologies.) For each (f, U)-admissible point
y, we define the topological index µ(y, f, U) as follows. Take any neighbourhood
V of y as above. From the inclusion j : U ∩ f−1[V ] →֒ V we get the homomor-
phism j∗ : H

n
c

(
U ∩ f−1V

)
→ Hn

c (U). Combining this with the (well-defined)
pullback of fp we have a mapping

j∗ ◦ f∗p : Hn
c (V )→ Hn

c (U) .

As the n:th cohomology groups with compact supports are Z for orientable n-
dimensional manifolds, we note that we must have

(
j∗ ◦ f∗p

)
(µV ) = kµU for

some k ∈ Z. This integer k is called the topological index. We denote it by
µ(y, f, U). To see that the notation is sensible, we note that the topological
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index is independent of the choice of V . This follows as if we would have another
neighbourhood V ′ of y that satisfies all the given conditions, then V ′∩V would
also satisfy these. As the inclusions

V ′ ∩ V →֒ V and
(
U ∩ f−1[V ] ∩ f−1[V ′]

)
→֒ U ∩ f−1[V ]

induce orientation preserving isomorphisms, we see that the indexes we receive
from V and V ′∩V equal. This shows that the index is independent of the choice
of V .

To make the definition of topological index feasible, we want to see that it is
not hard to find triples (U, f, y) such that the point y is (U, f)-admissible. The
following lemma implies that for any x ∈ M we have a neighbourhood U such
that f(x) is (U, f)-admissible. The claim basically follows from [Väi66, Lemma
5.1, p.5]

Lemma A.8. Let f : M → N be a continuous open discrete mapping. If
U ⊂M is a domain such that U is compact, then each point of the set N \∂f [U ]
is (U, f) admissible.

We will have some dealing with the supports of singular cochains, and for
that we agree on the following notation. To simplify typography, we write in
shorthand Cn

c (U) := C̃n
S (U ;Z). If we have A ⊂ U , then we denote

A∗ = {g ∈ Cn
c (U) | Im(g) ⊂ A}.

Also, if ξ ∈ Cn
c (U), we set

supp∗(ξ) =
⋃
{Im(g) | g ∈ supp(ξ)}

Note that

supp∗(ξ) ⊂
⋃

i

Ui if and only if supp(ξ) ⊂
⋃

i

U∗
i .(7)

The following lemma is clear.

Lemma A.9. Let f : X → G be a mapping from an arbitrary set to a group. If
{Ui | i ∈ I} is a collection of disjoint sets and supp(f) ⊂ ∪i∈IUi, then

f =
∑

i∈I

f |Ui
.

In this context f |Ui
is understood to be defined on the whole of X and be iden-

tically zero outside the set Ui.

Theorem A.10. Let U1, . . . , Uk be disjoint open subsets ofM and assume

U ∩ f−1{y} ⊂
⋃

j

Uj ⊂ U.

Then

µ(y, f, U) =

k∑

i=1

µ(y, f, Ui)

when y is admissible for all the pairs (f, Ui) and (f, U).
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Remark A.11. What we really prove is expressed as follows.

”µ(y, f,D)µU = f∗µV =
∑

i

(f∗µV )|Ui
=
∑

i

(f |Ui
)∗µV =

∑

i

µ(y, f, Ui)µU”

The problem is that most of this is ill-defined. The following proof mainly
consists of bringing the correct formal manipulation to the idea behind this
’equation’.

Proof. Let V ⊂ N be the neighbourhood of y given in the definition of the
topological index. By our assumptions we know that fp := f |U∩f−1[V ] is a
proper mapping. From this it follows that we must have ∂U ∩ f−1{y} = ∅
because otherwise we could pick a small compact neighbourhood K of y, whose
pre-image under fp would the intersect both the open set U and its boundary.
This cannot happen as then f−1

p [K] would not be compact even though fp should
be proper. We want to ’move’ the restriction part of this mapping. This is why
we need to the following: In the situation above we have that the mappings

(
j∗(f

∗
p ξV )

)
|U∗

i
: Cn

c (Ui)→ Z and (j∗((f |Ui
)∗ξV )) : C

n
c (Ui)→ Z(8)

equal. To see this let ω be a singular simplex, i.e. ω : ∆n → Ui. Now

(
j∗(f

∗
p ξV )

)
|U∗

i
(ω) = j∗

(
(f∗p ξV )(ω)

)

= (ξV )(fp ◦ ω)
= (ξV )(f |Ui

◦ ω)
= ((f |Ui

)∗ξV )(ω)

= (j∗((f |Ui
)∗ξV )) (ω),

which proves the claim.
Now finally combining the definition of topological index, equations (??) and

(8), we get

µ(y, f, U)ξU =
(
j∗ ◦ f∗p

)
(ξV )

=
∑

i

ιi∗
((
(j∗ ◦ f∗p )(ξV )

)
|U∗

i

)

=
∑

i

ιi∗ ((j∗ ◦ (f |Ui
)∗)(ξV ))

=
∑

i

ιi∗ (µ(y, f |Ui
, Ui)ξUi

)

=
∑

i

µ(y, f |Ui
, Ui)ι

i
∗ (ξUi

)

=
∑

i

µ(y, f |Ui
, Ui)ξU

=
∑

i

µ(y, f, Ui)ξU .
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From this theorem it follows, that if U1 and U2 are two neighbourhoods of
x ∈ M such that U i ∩ f−1f(x) = {x}, then µ(f(x), f, U1) = µ(f(x), f, U1).
Thus we may define that i(x; f) = µ(f(x), f, U) for any neighbourhood U of
x ∈M such that U ∩ f−1f(x) = {x}.

Corollary A.12. In the situation of the previous theorem, we have that

µ(y, f, U) =
∑

w∈f−1V ∩U

i(w, f).

Proof. This follows by choosing the sets Ui so small that f−1[f(x)] ∩ Ui = {x}
for all x ∈ Ui for all i.

The following lemma is the result we need in proving our path-lifting theorem
5.12.

Lemma A.13. Suppose f :M→N is an orientation-preserving open discrete
mapping between oriented manifolds. Then for any r ≥ 0, every point

y ∈ {x ∈M | i(x; f) = r} =: F

has a neighbourhood U such that f |U∩F is injective.

Proof. As the mapping x 7→ i(x; f) is upper semicontinuous, we can pick for
any x0 ∈ F a neighbourhood U such that the index is well defined and i(x; f) ≤
i(x0; f) for all x ∈ U .

Let x ∈ F ∩ U . By assumptions on U and orientability of f we know that
for all w ∈ f−1{f(x)} we have i(w; f) ≥ 0. So by using theorem A.10 we see
that

r = i(x; f)

= µ (f(x), f, U)

=
∑

w∈U∩f−1{f(x)}

i(w, f)

≥ i(x; f)
= r.

This can only happen when ♯(U ∩ f−1{f(x)}) = 1, which means that only x is
mapped to f(x). As x was arbitrary, f |U∩F is injective.

Note that

Bf = {x ∈M : |i(x; f)| 6= 1}.

We state the following basic result of topological index which follows from
the previous theorem and the fact that the index is locally constant (±1) outside
the branch set.

Lemma A.14. The functionM→ Z, x 7→ i(x; f) is upper semicontinuous.
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B Open problems

Conjecture B.1. Let X be a metric space. If there exists a net in X with at
most exponential growth rate, then Ord∗(X) contains a minimal element.

Conjecture B.2. Let M be a length manifold and assume f : Rn → M is a
BLD mapping. ThenM has a diameter bounded fundamental group.

Conjecture B.3. Let M be a length manifold and assume f : Rn → M is a
BLD mapping. Then the set of homotopyclasses of geodesic triangles in M is
finite.

If z ∈ p−1
M{x0}, we denote

px0

n := {α1 ∗ · · · ∗ αn | αj : xj gy xj+1, xj ∈M, x1 = xn = x0},
p̃zn := {α̃ | α ∈ px0

n , α̃(0) = z}

and

Px0

n := {[ω] ∈ Π1(M, x0) | ω ∈ px0

n }, P̃z
n := {[ω̃] | ω ∈ p̃x0

n }

An open-ended idea B.4. We have a chain of inclusions

∅ = Px0

0 ⊂ Px0

1 ⊂ Px0

2 ⊂ . . . ,

and actually even Π1(M, x0) =
⋃

n∈N
Px0
n .

One could try to construct some sort of chain complexes (or graded algebras)

of these, either by taking An := Px0

n+1 − Px0
n or Bn := Px0

n+1

/
Px0
n

.

In both cases the mapping K induced by path composition gives us a mapping

K : Π1(M, x0)×Π1(M, x0)→ Π1(M, x0)

such that for each m,n ∈ N we have that

K [Px0

n × Px0

m ] ⊂
m+n⋃

j=1

Px0

j .

This resembles in some sense the behaviour of the wedge product in the graded
algebra formed by k-forms in differential geometry.

Some sort of exterior derivative could also be defined in the lines of

d(α1 ∗ · · · ∗ αk) = α1 ∗ · · · ∗ α̂k,

where αi are geodesics defining a geodesical k-polygon, and α̂k is a path γ ∗ γ′,
where γ : αk(0) gy x and γ′ : x gy x0. (x ∈M)

( Or by trying something more fancy like

d(α1 ∗ · · · ∗ αk) = ”

k∑

j=1

”α1 ∗ · · · α̂j ∗ · · · ∗ αk,

where αi are geodesics defining a geodesical k-polygon, and α̂j is a path γ ∗ γ′,
where γ : αj(0) gy x0 and γ′ : x0 gy αj(1). )
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Conjecture B.5. Let M be a length manifold and assume f : Rn → M is a
BLD mapping. Then ♯Pn

x0
<∞.

Conjecture B.6. LetM be a length manifold and assume ♯Pn
x0
<∞ for some

n ∈ N. Then ♯Pk
x0
<∞ for all k.

Conjecture B.7. Let X and Y be two metric spaces. Suppose there exists
coarse Lipschitz quotient mappings X → Y and Y → X. Then there exists a
coarse quasi-isometry X ≃ Y .

An open-ended idea B.8. The growth rate does not contain information
about how many unbounded directions a space has. (Ord(N) = Ord(Z)) On the
other hand a coarse quasi-isometry is able to see such things. (N is not CQI
with Z) Could one introduce a more strict version of growth rate that would say
something like “same growth rates imply existence of CQI”.

Or could one measure the coarse difference between spaces with the same
growth rate by doing some (co)homology theory by constructing suitable chain
complexes? For example: The spaces

R2,

R2
+ = R× [0,∞[ and

R2
++ = R× [0,∞[∩[0,∞[×R

all have the same growth rate O(x2). There is no coarse quasi-isometries between
any of these, but we do have regular mappings

R2 → R2
+ → R2

++

and inclusions on the opposite direction.

An open-ended idea B.9. Could one take an axiomatic approach to growth
(rate) ?
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