VECTORS IN A FEW SPECIFIC LARGE DIMENSIONS

A SHORT SURVEY ON ALMOST ORTHOGONAL

RAMI LUISTO

ABSTRACT. The concept of almost orthogonal vectors, i.e. vectors whose
cosine similarities is close to 0, relates to topics both in pure mathematics
and in coding theory under the guises of spherical packing and spherical
codes. In recent years the rise of advanced language models in Al has
created new interest in this concept as the models seem to store certain
concepts as almost orthogonal directions in high-dimensional spaces. In
this survey we represent some ideas regarding almost orthogonal vec-
tors through three approaches: (1) the mathematical theory of almost
orthogonality, (2) some observations from the embedding spaces of lan-
guage models, and (3) generation of large sets of almost orthogonal
vectors by simulations.

CONTENTS
1. Introduction
1.1. Structure of this survey
2. Context — Latent spaces of (Large) Language Models
3. Mathematical preliminaries
3.1. Notation
3.2. Volumes and areas of spheres and balls
3.3. High and low dimensions in general
4. Mathematical bounds to almost orthogonality
4.1. Volume-based limits
4.2. The Johnson-Lindenstrauss Lemma
4.3. Packing density, spherical codes and the Kabatianskii-
Levenshtein bound
5. Simulation approaches
5.1. Methods
5.2. Combinations and hyperparameters
5.3. Generation results
5.4. Simulation conclusions
6. Afterword
6.1. Possible future avenues of study
References

Date: September 24, 2025.

O W W N

10

14
15
17

19
20
20
21
23
23
23
25
28

2 RAMI LUISTO

1. INTRODUCTION

In a given Euclidean space R™ there can exist at most n directions that
are pairwise orthogonal [Ax115]. If we relax the condition of orthogonality
by requiring the inner product of unit vectors to be merely close to 0 the
situation changes drastically, especially in higher dimensions. This phase
transition in high and low dimensions relates to a concept sometimes known
as the curse (or blessing) of high dimensionality. We’ll discuss this further
in the coming sections, see especially Section 3.3

We say that two vectors v,w € R” are e-almost orthogonal for ¢ > 0 if
their cosine similarity lies between —e and €. The main motivating question
for this paper is as follows:

How many pairwise e-almost orthogonal vectors can fit in R”
for various values of ¢ and n?

As we’ll discuss in Section 4.3 this question is closely tied to various open
problems related to both spherical codes and sphere packing. In particular,
exact solutions to the best configurations of vectors are beyond the scope of
this survey, and instead we will focus on various estimates.

Since e.g. spherical codes have many practical applications, there already
exists literature on approximate solutions. However, these do tend to focus
more on low-dimensional examples — see e.g. [Coh23] where the examples
only go up to dimension 32. This is natural if you aim to use this with e.g.
binary blocks that tend to have word sizes of 8, 16, or 32 bits. By contrast,
the existing results for almost orthogonal vectors in higher dimensions tend
to focus on the asymptotic behaviour of the results, i.e. what happens when
the ambient dimension grows very large. In particular, the typical results
like the Johnson-Lindenstrauss Lemma tend not to yield good estimates in
dimensions below several thousands — see Section 4.2.

The contextual motivation for us, on the other hand, arises from the so
called embedding vectors of various Al-models. For a contemporary example,
various language models based on the transformer architecture (including
GPT, LLaMa, Gemini and Mistral) encode the meaning of text through
embedding vectors that live in high-dimensional Euclidean spaces like R768
or R0 (see e.g.[Eth19, Ope23, RKR21]). These dimensions lie between
the small dimensions of coding theory and high dimensions of asymptotical
results. This gap is of primary interest in this survey.

Based on current understanding, see e.g. [EHO"22, HCH*23, BTB*23,
TCM™24], modern language models models seem to store different semantic
concepts as different directions in these embedding spaces. Crucially for us,
these different concepts seem to be encoded as almost orthogonal vectors,
and it turns out that the geometry of e.g. R™® can encode much more such
directions than just 768, though lossily. A driving motivation in this survey
is to better understand how many almost orthogonal vectors can be fitted in
various high-dimensional Euclidean spaces where the particular dimensions
we study are the embedding space dimensions of particular contemporary
language models — for the sake of exposition we will often focus on dimen-
sions 512, 768, 1024 and 2048 when concrete examples are needed.

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 3

As per the parameter ¢ in e-almost orthogonality we will in most examples
focus on either ¢ = 0.1 or ¢ = 0.01 when we need to fix the parameter
ourselves. This is again purely for the sake of exposition, as the values
themselves do not carry any special meaning. Note that e = 0.1 corresponds
to angles between 84 and 96 degrees, while £ = 0.01 corresponds to angles
of roughly 90 £ 0.5 degrees. Also note that if unit vectors v and w have
an inner product of 0.1, then v = 0.1w + 0.9u where u is orthogonal to w,
meaning that ”10% of v is explained by w”.

1.1. Structure of this survey. We'll start by ”setting the scene” and
describe in a bit more detail on why we are interested in almost orthogonality
in high-dimensional spaces when studying modern (Large) Language models.
We will then go through some mathematical preliminaries, including some
more heuristical comments on how the geometry of low and high dimensions
differs. We’ll then move on to studying some (trivial) mathematical bounds
we can get to the amount of almost orthogonal vectors in Euclidean spaces.
We then look at some other classical results, in particular the Johnson-
Lindenstrauss Lemma. The bounds we see here turn out to be somewhat
meagre compared to practical situations. Thus we turn into simulations and
compare various methods of generating almost orthogonal vectors. In the
final section we’ll draw conclusions on all of this.

We wish to emphasize that this paper is structured as a survey; it claims
no new mathematical theorems, rather it tries to provide a convenient sum-
mary of useful known information. On the other hand it does not claim to
be a comprehensive survey as many areas are only briefly mentioned, and
we lack the expertise to comment authoratively to many topics discussed
here.

2. CONTEXT — LATENT SPACES OF (LARGE) LANGUAGE MODELS

We will not repeat here a detailed introduction to the architecture of
transformer models, rather we given a quick overview of the terminology.
For a proper introduction, see e.g. [TVWW22].

Most classical transformer-based language models break incoming text
into tokens. These tokens tend to be common words or word fragments. The
collection of tokens a model has is called the vocabulary. The vocabulary size
of e.g. the different BERT"' variants are in the ballpark of 30-50 thousand
tokens. For a more thorough introduction to tokens and their usage we refer
to [DCLT18] and [Mik13].

For each token in the vocabulary the model has a learned embedding
vector of a particular dimension d,,qe1- These vectors are called the input
embeddings of the model. Thus a given input sequence of natural text is bro-
ken into a sequence of tokens, and each of these tokens is then converted into
the corresponding embedding vector. This sequence of embedding vectors is
then passed through several transformer blocks by the model. These tran-
former blocks update each of the embedding vectors of the input sequence
based on other vectors in the sequence. This evolution of the sequence of

BERT is what I would call the archetypical small language model, see e.g. [RKR21]
for a comprehensive text on the topic.

4 RAMI LUISTO

embedding vectors is sometimes called the residual stream. For the standard
transformer architecture, the dyoqe stays the same for the embeddings as
they progress through the transformer blocks.? We've listed some of the

values® of dpoqer in Tables 1, 2 and 3 for a few common SLM and LLM
architectures.

Model dmodel
Encoder-only (BERT-style)

BERT (base) [DCLT1S] 768
BERT (large) [DCLT18] 1024
RoBERTa (base) [LOG'19] 768
RoBERTa (large) [LOGT19] 1024
DistilBERT [SDCW19] 768
ALBERT (base) [LCG*19] 128
XLM-RoBERTa [CKG'19] 768
XLNet (base) [YDY*19] 768
XLNet (large) [YDY+19] 1024
ERNIE [SWL*+19] 768

ModernBERT (base) [WCC™24] 768
ModernBERT (large) [WCC*24] 1024

TABLE 1. Token-embedding (input) vector sizes for a wide
range of language model families of the encoder architecture.

For us the input embeddings are of particular interest because they are
context free — the embeddings do not depend on any way on the other tokens
in the sequence nor on the relative or absolute position of a particular token.
Thus we can study these vectors as "independent embedding vectors”. For
latter parts in the residual stream any embedding vector is affected by the
other tokens and their positions in the input — i.e. the context. Thus the
study of the embedding vectors and their geometry in the latter layers of
transformers usually requires sampling of text examples and their careful
analysis. The selection of texts to use naturally has a considerable effect,
so for the examples in this section we simply restrict ourselves to the input
embeddings of various models.

To get an idea on what kind of cosine similarities we see in the real world,
we’ve taken a few common transformer-based models, extracted their input
embeddings and calculated the cosine similarities between each embedding
vector pair (excluding the trivial cosine similarities of a vector with itself).
In Figure 1 we plot the distribution of these cosine similarities for each
model.

A noteworthy property noticed already in [MBV17] and [Eth19] is that
the cosine similarities are not at all equally distributed around the origin.
Instead for almost all models the main mass of cosine similarities is strictly

2Though e.g. the ALBERT model uses factorised embedding; token embeddings are
128-dimensional but are expanded internally to a 768-dimensional vector at various points
in the processing.

3We list the exact dimensions when known, but for some closed source models list the
best known guesses based on public information available.

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS

Model dmodel
Decoder-only (GPT, LLaMA, etc.)

GPT-1 [RNST18] 768
GPT-2 (small) [RWC*19] 768
GPT-2 (medium) [RWCT19] 1024
GPT-2 (large) [RWCT19] 1280
GPT-2 (XL) [RWCT'19] 1600
GPT-3 (175B) [BMR*20] 12288
GPT-3.5 ~12288T
GPT-4 Not disclosed
Codex (12B) ~51207
LLaMA-1 (7B) [TLI*23] 4096
LLaMA-1 (13B) [TLI*23] 5120
LLaMA-1 (33B) [TLI*23] 6656
LLaMA-1 (65B) [TLI*23] 8192
LLaMA-2 (7B) [TMS*23] 4096
LLaMA-2 (13B) [TMS*23] 5120
LLaMA-2 (70B) [TMS+23] 8192
Mistral (7B) [Ope23] 4096
Mixtral (8x7B) [JSR*24] 40967
Bloom (176B) [LSFA*23] 14336
Falcon (40B) [AAA+23] ~8192f
Grok-1 [xT24] Not disclosed

TABLE 2. Token-embedding (input) vector sizes for a wide
range of language-model families of the decoder architecture.
tEstimated values; ”Not disclosed” indicates the vendor has
not released architecture details.

Model dmodel
Encoder—decoder (T5, PaLM, ...)

T5 (small) [RSR119] 512
T5 (base) [RSRT19] 768
T5 (large) [RSRT19] 1024
T5 (3B) [RSR*19] 1024
T5 (11B) [RSR*19] 1024
PaLM (540B) [CND 23] 18432
Gopher (280B) [RBC*21] 16384
Chinchilla (70B) [HBM122] 8192
AlphaCode (41B) [LCC22] 6144
Claude 1/2 [Ant23] Not disclosed
Gemini Ultra [PH23] Not disclosed

TABLE 3. Token-embedding (input) vector sizes for a wide
range of language-model families for the encoder-decoder ar-
chitecture. ”Not disclosed” indicates the vendor has not re-
leased architecture details.

positive, sometimes by a wide margin. With the interpretation that different

6 RAMI LUISTO

Cosine Similarity Distributions Across Models

bert-base-cased (768) 1

bert-base-uncased (768) -

bert-large-cased (1024)

bert-large-uncased (1024) 4

distilbert-base-uncased (768) 1

gpt2 (768) 4

gpt2-medium (1024)

Models

roberta-base (768)

roberta-large (1024) 4

t5-base (768) 4

t5-large (1024)

t5-small (512) 4

xIm-roberta-base (768) 4

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity

FIGURE 1. The distribution of pairwise cosine similarities of
input embeddings for various models. The dimension of the
embedding space is in parenthesis after the model name.

directions encode various semantic meanings in any transformer model, the
conclusion here would then be that almost all transformer models tend to
see quite a lot of similarities between any two words or tokens — at least
at the input embedding phase of things. Even if there are some meanings
that are somewhat orthogonal, strong negative correlation in the form of
a cosine similarity near —1 seems to be unheard of. We note that it is
not the "purpose” of the language models or their input embedding vectors
to minimize pairwise absolute cosine similarities. The models do want to
understand differences between tokens, but they also really ”"want” to find
similarities. Furthermore even if the model uses some ”basis” collection
of almost orthogonal directions to encode various meanings that correlate
more or less, most of the embedding vectors are then in a sense mapped to be
linear combinations of these major dimensions and not dominant directions
themselves.

We’ve listed some more detailed statistical numbers in Tables 4 and 5.

We further note that if we rescale the distributions as probability distri-
butions and then normalize them by translating by the mean and scaling by
the standard deviation, the distributions are very alike to each other and the
normal distribution. See Figure 2. We are not quite sure if this is expected
or surprising.

3. MATHEMATICAL PRELIMINARIES

We’ll start off with some mathematical preliminaries. We go through basic
notations and then define some special functions in order to approximate the
volumes and ares of high-dimensional balls, spheres and their subsets. We

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS

Model Emb. Dim Mean CosSim Std CosSim CosSim 25% CosSim 50% CosSim 75%
xlm-roberta-base 768 0.1959 0.0695 0.1487 0.1896 0.2358
t5-small 512 0.0569 0.0592 0.0170 0.0537 0.0925
t5-large 1024 0.1161 0.0472 0.0849 0.1126 0.1425
t5-base 768 0.0607 0.0491 0.0281 0.0576 0.0889
roberta-large 1024 0.3237 0.0912 0.2727 0.3273 0.3823
roberta-base 768 0.0234 0.0543 -0.0136 0.0189 0.0550
gpt2-medium 1024 0.3091 0.0471 0.2775 0.3058 0.3365
gpt2 768 0.2697 0.0537 0.2349 0.2679 0.3022
distilbert-base-uncased 768 0.5283 0.1023 0.4668 0.5398 0.5998
bert-large-uncased 1024 0.2986 0.0999 0.2397 0.3036 0.3598
bert-large-cased 1024 0.1713 0.0859 0.1155 0.1716 0.2261
bert-base-uncased 768 0.4424 0.0983 0.3811 0.4453 0.5052
bert-base-cased 768 0.1406 0.0848 0.0845 0.1397 0.1944

TABLE 4. Cosine similarity statistics: Embedding dimen-

sion, mean/std and quartiles of the cosine similarity.

Model Emb. Dim Mean Norm Std Norm Norm 25% Norm 50% Norm 75%
xlm-roberta-base 768 5.8701 0.4551 5.6919 5.9038 6.1314
t5-small 512 522.4708 65.9444 483.9047 520.5771 556.7801
th-large 1024 457.1157 63.6800 416.2583 449.0090 488.0606
t5-base 768 517.7155 72.0042 473.5927 510.2301 555.2615
roberta-large 1024 4.3211 0.5238 4.0697 4.4603 4.6806
roberta-base 768 3.6286 0.3494 3.4261 3.6920 3.8746
gpt2-medium 1024 3.6835 0.4126 3.4084 3.6646 3.9646
gpt2 768 3.9556 0.4379 3.6681 3.9405 4.2474
distilbert-base-uncased 768 1.6640 0.2713 1.4537 1.6626 1.8302
bert-large-uncased 1024 1.4575 0.2002 1.3131 1.4350 1.5864
bert-large-cased 1024 1.5238 0.1908 1.3917 1.5058 1.6478
bert-base-uncased 768 1.4036 0.1989 1.2556 1.4006 1.5312
bert-base-cased 768 1.2871 0.1511 1.1886 1.2687 1.3790

TABLE 5. Embedding norm statistics: Embedding dimen-
sion, mean/std and quartiles of the norm.

then present some high-level observations on the geometrical differences of
high and low dimensions.

3.1. Notation. We denote by N = {0,1,2,...} the set of natural num-
bers and use the shorthand of Ny for the strictly positive natural numbers
{1,2,3,...}. By R we denote the set of real numbers, while R stands for
the non-negative real numbers [0, c0).

By R™ we denote the n-dimensional Euclidean space for n > 1, i.e. the
set

{(z1,22,...,20) | 2 €R}.

We often denote the vectors in R™ by v, w, u or some other bold font letter.
In these cases we implicitly assume that the coordinates of the vector are
denoted by subscripts of an unboldened letter, e.g. the components of the
vector w are (wy,ws,...,w,), and we tacitly assume that the dimension n
is clear from the context. The origin is the point with all zero coordinates
and we denote it as 0 := (0,...,0).

We equip R" with the inner product

n
() RPXRT SR, (v,w) =Y v
=1

8 RAMI LUISTO

KDE plot of Cosine Similarity Distributions

bert-base-uncased (768)
bert-large-uncased (1024)
roberta-base (768)
roberta-large (1024)

t5-small (512)

t5-base (768)

t5-large (1024)

—— gpt2 (768)

gpt2-medium (1024)
distilbert-base-uncased (768)
xIm-roberta-base (768)
Normal Distribution

0.4 4

0.3

Density

0.2

0.1+

0.0

T T T T T T T
-3 -2 -1 0 1 2 3
Standardized Cosine Similarity

FIGURE 2. The distribution of pairwise cosine similarities of
input embeddings for various models after being scaled as a
probability distribution and normalized. Normal distribution
is shown for comparison.

and the Euclidean norm

|-lI: R" - Ry, ||v] =+ (v,v) = for v.e R™.

A vector with length 1 is called a unit vector. We call two non-zero vectors
v and w orthogonal if (v,w) = 0, and orthonormal if they are orthogonal
unit vectors.

With the inner product we can also define a crucial concept in this survey
- the cosine similarity.

Definition 3.1. Let v, w be two vectors in R\ {0}. We set their cosine
stmilarity to be the number

B (v,w)
VW) = S W

Note that orthogonal vectors have cosine similarity of 0, and the cosine
similarity of a vector with itself is always 1. Furthermore, scaling of either
vector by a non-zero scalar has no effect on the vectors’ cosine similarity.

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 9

For any two non-zero vectors v, w,

(v, w)

cos(#) cs(v, w),

AVl

where 6 is the angle between the vectors.

3.1.1. A few special functions. When studying the volumes and areas of
high-dimensional balls and spheres the formulas tend to involve a few special
functions. These are akin to the so called special constants like 7 or e, except
that the Gamma and Beta functions are functions and not constants. They
are natural objects that pop up* in many different settings, just like 7.
Regardless, they are needed for many volume and area estimates of high-
dimensional balls and spheres; for further details and proofs we refer the
reader to [AS48].

The Gamma function can be defined in a subdomain of the complex plane,
but for us it is sufficient to study it for positive real numbers.

Definition 3.2. The Gamma function I' is defined as
o
I':(0,00) > R, T(z) :/ t7 e dt.
0

For our purposes, the following properties of the Gamma function will be
sufficient, see again [AS48] for the proofs.

(I'1) The Gamma function generalizes the factorial, i.e. for all n € Ny
'n)=n-NYN=mn-1)-(n—2)-...-3-2- 1
(I'2) More generally, we have the following recursive relation for all x €
(0, 00)
MNz+1) =z -T'(x).
(I'3) We have an explicit value for 3, namely I'(3) = /7.
(I'4) Stirling’s formula approximation® applies for the Gamma function, i.e.

MNz+1)~V2rx (Ey .

e

Definition 3.3. We define the incomplete Beta function B: [0,1]x(0,00)? —
R by

B(z; a,b) = / (1 —t) Lt
0

And the Beta function is defined simply by setting the parameter x = 1
and denoted with a slight abuse of notation as B(a,b).

40ne could take the Platonic view that these are actually existing objects that have
some special property, or a more Kolmogorov-complexity style of approach that these
hapepn to be concepts that we come across so frequently that we’ve given them special
short names.

SWe'll ignore here the exact accuracy of the approximation here. In the range of values
we study it is less than a percent and, as we shall see, our estimations are not dependent
on so fine values.

10 RAMI LUISTO

Definition 3.4. The reqularized incomplete Beta function I: [0,1]x (0, 00)? —
R is defined as
B(z; a,b)

B(a,b)

3.2. Volumes and areas of spheres and balls. With the Gamma func-
tion and the various Beta function variants, we can now move on to studying
the volumes and areas for spherical objects in high dimensions.

By the unit cube in R™ we mean the set [0,1]", and by the unit cube
centered at the origin the set [—%, %]n When we talk of a cube of side
length a we mean a unit cube that has been scaled by the scalar a in all
coordinates.

In R™, the volume of a cube of side length a is simply a”, and the diameter
of such a cube is ay/n. In particular the unit cube has volume 1 and diameter
V.

We denote by B, (r) the closed ball of radius r in R", i.e. the set
Bn(r)={veR"[|v]<r}.

I,(a,b) =

Furthermore we denote its volume by V,(r).

Similarly the n — 1 dimensional sphere of radius r is the set

S={veR"||v|]|=r}
The volume of a ball of radius r in R" is given by
7.[.n/2
3.1 V =——"f"

(See again [AS48] for details.)

With the Stirling formula we can get an approximation for the volume as

7.‘_n/2 7.[.71/2

Vo(r) = T S "

02+D) T T (n/26+1>n/2+1r

_ L feme\™?
U \ n '

From this we can then calculate an approximate value for the function
R,: Ry — R, defined by setting R,(V) to be the radius ry for which

Vn(Tv) =V:
Ro(V) ~ () @), [yi/m,
2me

Note also that for the unit ball we have

From these formulae the crucial thing to note is that in V,,(r) for large
enough n the value is completely dominated by the term n~"/2, which goes
to zero faster than any polynomial or exponential function. To demonstrate
this, in Figure 3 we plot some volumes of balls in various dimensions. The
key takeaway here is that in higher dimensions the volume of the unit ball
starts to converge to zero as O(n~"/2), i.e. exceedingly fast.

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 11
Volume by dimension Volume by dimension (Log Scale)
ot Radius = 0.8 100 4 ge it e,
° e L4
15 s . Radius =1.0 | o ° See,) *tea,
° e Radius=12 | ®© 1071 Soq e
L) g *. o
[[°
g0 * . 81073 ey
b ~ L]
S . : g ‘e
] S 1075 N _ °
514 . 2 ¢ Radius =0.8 7
Cee °. > Radius = 1.0 °
0 RTINS [P P 10771 o Radius=1.2 .
5 10 15 20 25 30 5 10 15 20 25 30
Dimension Dimension

F1GURE 3. Volume comparisons of balls in different dimen-
sions. The maximum value for the unit ball occurs at n = 5.

In dimension 768, which is important for us, trying to directly calculate
the volume with the Gamma function creates an integer overflow in Python3,
and probably also in most other non-symbolic math libraries. With the
Stirling formula we can approximate that the unit ball in dimension 768
has volume below 1073%. Conversely, to get a ball with volume 1 we can
calculate that we would need a radius of around R7gs(1) ~ 6.7. This is our
first important geometric observation concerning high-dimensional geometry
— the volumes of n-dimensional unit balls are very very small.

On the other hand, as we mentioned earlier, the volume of a unit cube in
R™ is 1, and the diameter is \/n. So for example in dimension 768 we get the
diameter of the unit cube to be about 27.7. This property is a first hint at a
phenomenon that is sometimes described as ” pointyness of high-dimensional
cubes”. The idea being that even though in all dimensions some parts of a
unit cube centered at the origin are inside the circle (e.g. any point in the
cube of the form (0,...,0,1/2,0,...,0) is on the boundary of the cube and
within a unit ball), the corners of the cube start to point out of the ball more
and more. Also note that in 1D, looking at the edge vertex of a cube we see
that half of the ambient space is in the cube. In 2D, only a fourth and in 3D
only an eighth — see Figure 4. This theme continues in higher dimensions,
with the edge vertex of a cube in dimension 768 having less than one part
in 10729 of the ambient space being part of the cube. This can be thought
as another measure of the pointyness. In dimension 768, considering that
the unit cube has a diameter of around 27, we note that the corners also
point out of the ball quite a lot. Furthermore there are 2798 of them, and
the distance between two neighbouring ones is only 1, so the cube does seem
to have a more ”hedgehog-style” quality to it.

For our geometrical considerations, the concept of spherical caps is crucial.
To construct a spherical cap on a sphere, we simply fix a point on the sphere
take the intersection of the sphere with a ball centered on that point. There
are various ways to parametrize the spherical cap, we refer to Figure 5 for
the notation. In studying almost orthonormal vectors, we note that two unit
vectors v and w are e-almost orthonormal exactly when on the unit sphere
the spherical caps with 9 = ¢/2 around them are disjoint.

12 RAMI LUISTO

FIGURE 4. An illustration on how much of the ambient space
of a cube edge is part of the cube.

FicURE 5. Example image of spherical caps.

We are interested in calculating the area® of such spherical caps on unit
spheres, which we denote by SCy, in order to calculate an area-based bound
on the amount of disjoint spherical caps on a unit sphere.

In dimension n we get the following formula for the area of a spherical
cap, see [Led01] for details:

_ 12w
2 (3)

—-11
" orh—n2) 2 (7127 2) , 0<h<r,

(3.2) Ay

where I, is the regularized incomplete Beta function previously defined. For
a unit cube this simplifies to

1277/2 <n—1 1)
=-= 71 2 e 0<h<1.
n\ T (2h—h?)) =t >
2T (%)

2 72
We note here that if we plot Ay, for A € [0,1] in R?*%, see Figure 6, we
see that the supermajority of the area of the sphere is concentrated on the
equator.

(3.3) An

3.3. High and low dimensions in general. Low dimensions have several
”exotic” properties, both geometrical and topological. For example:

6For simplicity, we’ll use the term ”area” even though we are not working with 2-
dimensional objects. Here "n — 1 volume” or ”"n — 1 dimensional Hausdorff measure”
would be more appropriate, but a mouthful.

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 13

1e—150 Spherical Cap Area on S™255 (n=256)
1.4 4
1.2
'g 1.0 1
©
Q
©
Y08
©
L
2
< 0.6
o
-C\
< 0.4
0.2
0.0 4
0.0 0.2 0.4 0.6 0.8 1.0
h (cap height)

F1GURE 6. A plot of the area of a spherical cap of a unit
sphere in R?%.

(1) We've already noted above some aspects of high-dimensional ge-
ometry that are different from the more ”usual” low-dimensional
one. Another point of view is that it is the low dimensions that are
the strange ones. In high dimensions cubes are pointy, unit balls
have low volumes and even what they have is concentrated near the
boundary — indeed with the volume of a ball of radius r behaving as
O(r™), it is easy to see that for larger n the volume of B(0,0.99) is
considerably smaller than the volume of B(0, 1), meaning that the
volume of the ball is concentrated near the boundary. Furthermore
as we observed in Figure 6, for a sphere in high dimensions the su-
permajority of the volume of the sphere is concentrated near the
equator.7

(2) The only way to equip a Euclidean space with a product that pro-
duces a division algebra is restricted to dimensions 1, 2, 4 and 8
[Ada60]. As a more simple example, the only way to equip a Eu-
clidean space with a product that produces an algebraic field struc-
ture is to take R with the standard product or R? with the product
of complex numbers, see [Hat05].

(3) Knot theory works only in dimension 3; in lower dimensions a string
cannot be knotted and in higher dimensions any knot can be trivially
untied [Rol03].

(4) Stable orbits of planets require 3+1 dimensions, i.e. three spatial
dimensions and one temporal dimension, see e.g. [Ehrl7, Teg97].

(5) Exotic differentiable structures® occur only in R* [Fre82, Don83].

"This effect is also known as ”the concentration of measure”, see [Led01, Ver18§].

8We won’t go to the very technical details here, but we can equip an Euclidean space
with a so called differentiable structure that specifies how calculus works on that space.
There is only one choice in all the Euclidean spaces except for R*, which has more.

14 RAMI LUISTO

4. MATHEMATICAL BOUNDS TO ALMOST ORTHOGONALITY

Our main question in this section is to find out how many almost orthog-
onal vectors can we fit in a given vector space. After the previous section
on how different the behaviour of low and high dimensional spaces can be,
we should expect the dimension to play a large role. Indeed, let’s begin by
doing a quick simulation. In the Figure 7 we have sampled 1000 random
vectors in a few different dimensions and plotted the distribution of their
cosine similarities - note that we have included for any pair of vectors v, w
both the cosine similarity cs(v, w) and cs(w,v), which does not effect the
shape here as cs(v,w) = cs(w,v).

Distribution with n=2 Distribution with n=3 Distribution with n=4
0.7
6
0.6
5
05
0.4
>4 > >
2 2 204
H H S
g3 g2 g
& & £o3
0.2
2 02
1 01
3 0.0 0.0
-1.00 -0.75 -0.50 —0.25 0.00 025 0.50 0.75 1.00 ~1.00 -0.75 -0.50 0.25 000 025 050 075 1.00 ~1.00 -0.75 -0.50 -025 0.00 025 050 075 1.00
Cosine Similarity Cosine Similarity Cosine Similarity
Distribution with n=8 Distribution with n=16 Distribution with n=64
16
3.0
14
12 25
10
> > »20
g g I
g H H
g § §
3 208 3
£ H £a1s
0.6
10
0.4
0.2 05
.0 0.0+ 0.0+
.00 -0.75 ~0.50 —0.25 0.00 025 0.50 0.75 1.00 ~1.00 -0.75 —0.50 ~0.25 0.00 025 050 0.75 1.00 ~1.00 -0.75 -0.50 ~025 0.00 025 050 0.75 1.00
Cosine Similarity Cosine Similarity Cosine Similarity
Distribution with n=256 Distribution with n=512 Distribution with n=1024
6 12
8
5 10
6
34 3 z®
H g H
g g 8
g g g
g g g
g3 g
£ g, £
2 a
2
1 2
0 0 0
-1.00 -0.75 —0.50 —0.25 0.00 025 0.50 0.75 1.00 -1.00 -0.75 —0.50 —0.25 0.00 025 050 0.75 1.00 -1.00 -0.75 -0.50 —025 0.00 025 050 0.75 1.00
Cosine Similarity Cosine Similarity Cosine Similarity

F1GURE 7. Cosine similarities of randomly sampled vectors
in various dimensions.

Indeed, Vershynin [Ver18]® shows that the excpected value of the cosine
similarity of two random n-dimensional unit vectors is 1/4/n. This is in
some way expected; see again Figure 6 describing how the mass of a sphere

9See also https://math.stackexchange.com/questions/4555166/the-probability-for-
inner-product-for-two-unit-sphere-uniformly-distributed-rand.

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 15

is concentrated on the equator. From this point of view if you choose one
vector as your basis, then any random vector is most likely chosen from
near the equator relative to the first vector, meaning that they are nearly
orthogonal.

4.1. Volume-based limits. What’s the optimal amount then? How many
e-almost orthogonal vectors can we have in R” for a given € and n? Here
it turns out that an exact answer is really hard to figure out. The problem
is related to the problem of sphere packings in high dimensions. Indeed,
suppose we have a set of vectors in R"™ that have some upper bound on
their pairwise cosine similarities. Since the cosine similarity is not altered by
scalar scaling, we can assume these are all unit vectors. The upper bound on
the cosine similarities implies that these vectors, when thought of as points in
the n — 1-dimensional unit sphere S"~!, have a lower bound b = b(¢) on their
pairwise distances in the arc-distance of S*~!. This correspondence between
the angle bound and arc-distance is one-to-one, meaning that looking for an
optimal e-almost orthogonal set of vectors in R™ is quantitatively equivalent
to finding a set of points S?~! with a uniform lower bound b on their pairwise
distances. This in turn translates to trying to find out how many disjoint
balls of radius b can we have in the space S*~!. This problem is a variation of
the so called sphere packing problem, and we do not know how to solve it even
in most Euclidean spaces. (The solution is currently known in dimensions 3,
8 and 24: [Hal05, Vial7, CKM™*17].) So suffice it to say that we can’t prove
in this paper what is the maximum amount of t-almost orthogonal vectors
in dimension 768.

So if an optimal bound is impossible, can we at least estimate an upper
bound of these sphere packings? Let’s try an approach based on volume
estimates; two distinct unit vectors give rise to disjoint spherical caps, and
we can calculate how many disjoint spherical caps can at most fit on a sphere
based on volume. First recall Figure 5 on the terminology of spherical caps
and Section 3.2 for the area of such caps. We want to calculate the For
e-almost orthogonal vectors, the angle between them is o = cos™!(g), and
the disjoint spherical caps have angle a//2.

h=1-cos(a/2) =1 — cos (; cosl(a)) .

In particular, for us this boils down to
1277/2 n—11
A = 771 R —
h QF(%) 2h—h? < 9 a2>

and with A = 1 — cos(«/2) we get, by momentarily denoting cos(a/2) =: t,
that

2h — h%? =2 — 2cos(a/2) — (1 — cos(a/2))?
=2-2t—(1—1t)?
=2-2t—1+2t— ¢
=1—1>=1— cos(a/2)’.

16 RAMI LUISTO

So in particular we get that

1277/2 n—1 1
VOI(SCa/Q) = 5@11—(:05(04/2)2 <27 2) .

On the other hand for the area of the whole n-dimensional unit sphere,
S™, we get

27[.n/2

I'(n/2)

In particular, a single spherical cap takes up a fraction of

SCa/Q 1 n—11
A = 5117COS(04/2)2 9 9

of the area of the total unit n-sphere. Note that each direction produces
two such spherical caps at the antipodal points. Thus the inverse of twice
this fraction gives an absolute area-based upper bound for the amount of
e-almost orthogonal vectors in R™.

Let’s get estimates for values of € being 0, 0.1 and 0.01 in the dimensions
ofn =2, n=3n=232n= 768 and n = 4096. For each ¢ we have
o = cos!(e), and for these values we wish to estimate

n—1 1\""
Il—cos(a/2)2 <27 2))

where I, (a, b) is the incomplete Beta function. The results are listed in table

n\e | 0.1 0.01 0
2 2.136 2.013 2.0
3 3.87 3.456 3.414
4 6.605 5.602 5.504
8 45.08 31.36 30.17
16 1526 720.9 665.9

32 1.267 x 105 2.784 x 10° 2.372 x 10°
768 | 2.537 x 1013% 3.249 x 1018 6.849 x 10116
4096 | 6.635 x 10711 1.127 x 10927 1.296 x 10618

TABLE 6. Some area-based bounds for the amount of e-
almost orthogonal vectors in R".

So what we note here is that even though these area estimates do give
an upper bound to the almost orthogonal vectors, the estimates are quite
useless. Indeed, when applied to the cosine similarity of 0 which corresponds
to actually orthogonal vectors, we get an estimate much larger than the
dimension which we know to be the real bound in dimensions above three.
So the geometry of the situation is really crucial here; the dominant limit to
the amount of spherical caps is not lack of volume. Indeed, as we’ll discuss
in Section 4.3, the so called packing density goes down at an exponential
speed for high dimensional sphere packings.

So this purely area-based bound does tell us that we can’t pack more than
about 10'%° of 0.1-almost orthogonal vectors in R7%®. Later on we’ll see that

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 17

the actually achievable amounts seem to be in the realm of 10> — —10°, so
this bound is not very useful in practice.

4.2. The Johnson-Lindenstrauss Lemma. We next study some existing
strong results on how point clouds can be embedded into a lower ambient
dimension while limiting the amount of distortion. First we study a classical
result of Johnson-Lindenstrauss that gives excellent asymptotic bounds on
a slightly more complex question.

One approach to get almost orthogonal vectors in R™ is to try to take a
set of orthogonal vectors in a higher dimensional space, say R, and then
see if we can have a mapping f: RV — R” that doesn’t distort the cosine
similarities "too much”. This type of dimensionality reduction is a very
important tool in e.g. data-analysis, compressed sensing, and other fields
where we get algorithmic complexity penalties from high dimensions. A
classical result to aid in this is the Johson-Lindenstrauss lemma, see [JL184]

Lemma 4.1 (Johnson-Lindenstrauss Lemma). Let 0 < & < 1 and let S :=

{x1,...,2} C RN. Then for any n > 81067%(@ there exists a linear map
L: RN = R" such that
(4.1) (1 —e)llzi —a;|* < || La; — Laj||* < (1 +¢)l|l2i — a5

for all x;,z; € S.

Remark 4.2. We have used in the statement of the theorem the constant 8
in the bound n > 8108%(k), as this seems to be the common one listed e.g.
in Wikipedia. However, the source for this constant are the lecture notes
[FG16, Lemma 2.6] which are not peer-reviewed, though they do contain
a proof. The discussion on the Wikipedia articles talk page!'® lists various

variants on this bound, which we summarize here:

e For m > 4 we get n > 20(Inm)/e? in [MRT18, Lemma 15.4].

e In [Mat13, p. 300] they have n > 200(Inm)/e2.
[DGO3] lists a different "style” of bound: n > 4 (¢2/2 — 53/3)_1 log (k).
The lecture notes [Duc24, Section 3.1.3] prove n > 16(Inm) /2.

For our purposes it turns out that the exact choice here does not matter,

as we shall soon see. The issue is that these results are by nature asymptotic
and do not give strong estimates in the small-ish dimensions like 768.

Note that the Johson-Lindenstrauss Lemma can be widely useful in di-
mension reduction. Suppose we are studying a number of grayscale images
that have been taken with a megapixel resolution, i.e. we have a set of vec-
tors in R000000 Many algorithms will balk at such a high dimension, e.g.
if their complexity is polynomial w.r.t. the dimension. But if we are willing
to tolerate some error, then Johnson-Lindenstrauss can help us by a lot.
Indeed, imagine we have 10k images we want to study and we are okay with
an error rate of € = 0.1. Now the Johnson-Lindenstrauss lemma gives us a
mapping into an Euclidean space of dimension around 7000. Now suppose
we have 100k images, 1M or 10M images. What we see now is that we only
need to map our data to dimension of about 9k, 11k or 13k, respectively.

10https ://en.wikipedia.org/wiki/Talk: Johnson\%E2\%80\%93Lindenstrauss_
lemma,viewed 24.09.2025.

18 RAMI LUISTO

This reduction in dimension from a million to around ten thousand can
have a drastic effect in practice. Especially since the amount of images is
only increasing the end dimension in a logarithmic way, as we see in these
examples.

Now let’s turn to see how we might use Johson-Lindenstrauss with our
problem. The natural idea would be, of course, to take a large-dimensional
RY and choose its basis plus the origin as our set of vectors. Now the first
question is then about how the cosine similarity will react to the Johnson-
Lindenstrauss map. First we see that

(Lv,Lw) 1| Lv|* +[|Lw|® — [Lv — Lw]|?

ILv[[[[Lw] 2 LV [l Lw]l
1O+)vIP+ A+ elw]? — 1 —g)llv—wl
— 2 VI—elvlv1—elw]
Now if v and w are orthonormal, then |v|| = [[w| =1, and ||v — w||? = 2,

so we get that this equals to
L +o)|vI?+ (1 +e)wl® = (1 —e)lv—w]|

2 V1—¢|v[|V1—ellw]
11 4e) 4+ (1+e)—2(1—¢)
T2 (1—¢)

1 4e

T 2(1—¢)

2
(=

Similarly we can derive a lower bound, and so we have

2e (Lv, Lw) < 2e
(1+e) = Lvlll[Lw] — (1 —¢)

Thus if we apply the Johnson-Lindenstrauss Lemma to the set of unit
vectors in RY appended with the origin with our aim to generate almost
orthogonal vectors in R™®, we see that we have to choose ¢ to be roughly
half that of the desired threshold. For an example, if we want the threshold
to be around %, then we have to choose ¢ = %. With this choice the Johnson-
Lindenstrauss lemma then gives us a bound from

In(N + 1)
o2

(4.2) -

768 > 8 & 96-£2>In(N+1)

96
— >In(N +1
35> n(N +1)

8
o N <P 1134,

So for the threshold of %, a direct application of the Johnson-Lindenstrauss
technique guarantees at least 13 almost orthogonal vectors in R7%8. This is
a far cry from the 768 orthogonal base vectors we know that exist in R768.

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 19

More generally Johnson-Lindenstrauss gives the bound

(4.3) N < exp (’; (12_tt>2> —1

And so for the threshold of 0.1-almost orthogonal vectors, to get more than
the basis-guaranteed N > n almost orthogonal vectors, then we have to have
n at least 29748. Though after that bound the exponential behaviour takes
over, and e.g. for n = 40000 and ¢ = 0.1 we already get N > 10°.

So turns out that for our ”"not quite so large” dimension of 768, the
Johnson-Lindenstrauss result does not yield results applicable for our al-
most orthogonal vectors. The issue here stems largely from the fact that
the Johnson-Lindenstrauss result is an asymptotic result and gives a much
stronger output than just almost orthogonal vectors - it roughly preserves
distances of an arbitrary set of vectors.

We know, however, that more almost orthogonal vectors can be fitted into
R758, For example, the vectors (1,1,1,...)/v/768 and (1, —1,1,—1,...)/y/768
have a very small cosine similarity (below 0.04) both with all the standard
basis vectors and each other. With a bit of clever combinatorics it’s not hard
to get many more such examples. Since these theoretical results don’t seem
to provide impressive results in this realm of dimensions, let us turn to less
theoretical approaches. Though as we will later see the underlying idea be-
hind the proof of the Johnson-Lindenstrauss Lemma is still very applicable
for our purposes.

4.3. Packing density, spherical codes and the Kabatianskii-Leven-
shtein bound. In this section we’ll briefly mention a few related topics.
We won’t dive deeper to these ideas, but note them for context.

As we noted in Section 4.1, the pure volume-based bounds on almost or-
thogonality were completely useless in high dimensions. The issue here is
related to the so called packing density of spherical packings. We refer to
[Coh16] for an overview of the topic of sphere packing and packing density,
but the main point for us is that for high dimensions sphere packings are not
dense; they cover an exponentially diminishing fraction of the ambient space
as the dimension increases. We saw a part of this effect on the rightmost col-
umn of Table 6 — there the true maximum amount of disjoint spherical caps
with antipodal pairs is dictated by linear algebra, but the bounds provided
by essentially area density grow in some superexponential fashion.

So almost orthogonal vectors correspond to pairwise disjoint spherical
caps. Another way of phrasing this is that they correspond to a set of
points on a sphere with an upper bound to their pairwise inner products.
Such point sets on a sphere are known as spherical codes and have direct
applications in coding theory. We refer the reader to [CZ14] for details, but
note that the study of spherical codes is also an unsolved field of study.

A related problem is known as the Tammes problem (see e.g. [Musl8])
where we ask to minimize the pairwise distances of a set of points on the
sphere. Anecdotally we’ve seen the Tammes problem used as a term in
the realm of ”small balls and distances”, whereas the ”almost orthogonal”
approach is more in the realm of large distances as the points induced on
the sphere aim to be almost a quarter apart.

20 RAMI LUISTO

Note again that both the Tammes problem and spherical codes usually
focuse on points on a sphere while we work on directions in space. Any
direction naturally induces two antipodal points on a sphere, but this ex-
tra assumption of antipodal inclusion is not present on the more general
questions of spherical codes or the Tammes problem.

5. SIMULATION APPROACHES

Our aim is to next turn into generating collections of almost orthogonal
vectors in various Euclidean spaces. As we’ve learned so far, there is very lit-
tle hope of proving anything about the optimality of any of these collections.
But if different methods seem to yield similar results, we could consider that
this as weak evidence that an actual mathematical limit might be near.

5.1. Methods. Our three main generation approaches are:

(1) Sampling random unit vectors.

(2) Random projections of higher-dimensional bases in the spirit of the
proof idea behind the Johnson-Lindenstrauss Lemma.

(3) Energy minimization through ML methods.

Each of these have their own subsection below, explaining the idea of
the approach. Besides these generative techniques, we also test pruning
methods, i.e. generating extra vectors and then dropping a subset with an
aim of reducing the maximum absolute cosine similarity.

5.1.1. Randomly sampled unit vectors. For us this is the most straightfor-
ward method. If we sample unit vectors randomly, then they should not
have massive pairwise cosine similarities. Indeed, the expected value of the
cosine similarity between two randomly sampled unit vectors in R" should
be around ﬁ (See again the discussion in Section 4.)

It is not trivial'' to derive what the expected maximum absolute cosine
similarity then would be for N randomly generated unit vectors, which is
why we turned to simulations. Though see again Figure 7 where we show
a descriptive example of the distributions of pairwise cosine similarities of
random unit vectors in various dimensions.

After some heuristical tests, we settled to generating twice the amount of
vectors here and then pruning half of them.

5.1.2. Random projections of higher-dimensional bases. Instead of raw sam-
pling, we can apply the procedure behind the proof of the Johnson-Linden-
strauss Lemma discussed earlier (Section 4.2). Here the basic idea is that
if we take a collection of vectors in a high dimension, then its projection to
a random subspace has a non-zero probability to weakly preserve its var-
ious (geo)metric properties. So for our purposes of trying to find almost
orthogonal collections of vectors, a natural approach here would be to take
a random orthonormal basis in a high-dimensional space RY and project it
to a lower n-dimensional space subspace V C RV,

Due to rotational symmetry, it suffices to either take the standard basis
of RY and project it to a random subspace or to take a random orthonormal
basis and project it to the subspace spanned by the first n coordinates i.e.

11Or7 it was not trivial for us.

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 21

take the first n coordinates of the vectors. We'll opt for the latter here,
though the former could probably be optimized to run a bit faster and with
less memory.

Also in this generation approach we opted to generating twice the amount
of vectors and pruning half.

5.1.3. Minimizing the absolute value of cosine similarity. Partially moti-
vated by a video of the math youtuber 3BluelBrown'? we wanted to try out
a more machine-learning based method. Here we create a nice collection of
vectors by minimizing a type of energy function on the pairwise distances of
vectors. To this end we take a sequence of unit vectors representing direc-
tions [v1,...,v,], append them with their antipodal vectors [—wvy, ..., —vy],
and then look at the energy

1
2 @ar)7
where the (wj)?il is the set of vectors and their antipodal vectors. We start
with a random sampling of vectors, and then "nudge” each of the vectors v;
in direction that most reduces this energy.
In this approach the pruning methods proved, unsurprisingly, mostly

detrimental.

5.2. Combinations and hyperparameters. We tested several variations
and combinations of these generation and pruning techniques. For the en-
ergy minimization there was little effect on the results based on whether we
started with a random collection of vectors or e.g. something generated with
the random projections method. We also tested some variations on how we
sample random unit vectors, but the results were indistinguishable.

For the energy minmization there were various hyperparameters, but as
our aim here is to show more qualitative than quantitative results we won’t
go to details on our choices. The source will be made available. We will,
however, mention that the choice for th exponent in our energy functional
had a big effect on how fast the process converged. Figures 8 and 9 below
show how the maximum absolute cosine similarity evolves with various ex-
ponent choices. We see that the evolution converges much faster when the
exponent is increased until around exponent 16 after which results start to
worsen. This is most likely due to the fact that the higher exponent pro-
duces stronger gradients, until the floating point numbers start to round off
to zero. There is probably some clever way of optimizing this procedure,
but we leave it out of the scope of this article.

We also tested a few variants of the energy minimization approach where
we used other loss functions that targeted the max or top N absolute cosine
similarities directly. They did not prove to be very effective in practice.'®

In the pruning methods we tried a few variations of the amount of over-
sampling and then pruning. The factor of 2.0 was chosen quite heuristically

2https://www.youtube.com/watch?v=9-J10dxWQs8

13We also note that the 3BluelBrown youtube video mentioned earlier also used a
gradient flow method but aimed to minimize the average cosine similarity which produced
good average results but strong outliers.

22 RAMI LUISTO

Energy minimization € per step (dim=512, count=3000, steps=500)

0.20 4

o
i
®

—— p=1 (final £=0.0895, 11.35)
p=2 (final £=0.0830, 9.93)
0.16 o —— p=4 (final £=0.0769, 10.0s)
—— p=8 (final £=0.0764, 10.0s)
—— p=12 (final £=0.0761, 9.9s)
0.14 4 —— p=16 (final £=0.0776, 10.0s)
p=32 (final £=0.1028, 10.0s)
I —— p=64 (final £=0.2194, 10.0s)

max |cosine similarity|

Step

F1GURE 8. The effect of the energy exponent and step count
in generating 3000 unit vectors in R%'? minimizing their en-

ergy.

Energy minimization £ per step (dim=2048, count=3000, steps=500)

—— p=1 (final €=0.0544, 32.65)
p=2 (final €=0.0463, 24.0s)
—— p=4 (final €=0.0372, 23.95)
—— p=8 (final €=0.0317, 24.05)
—— p=12 (final £=0.0323, 24.1s)
—— p=16 (final €=0.0358, 24.0s)
p=32 (final £=0.0609, 24.05)
—— p=64 (final £=0.1170, 24.0s)

0.10 4

max |casine similarity|
o
2
]

0.06 4

€

step

F1GURE 9. The effect of the energy exponent and step count
in generating 3000 unit vectors in R?%*® and minimizing their
energy.

as a balance between compute time and results. We note that besides just
dropping the ”worst offenders” from the generated set one by one, a more
subtle approach could be to try and detect what is in some sense the best
subset of vectors from a given generated set. If we phrase this as a graph
problem where each vector is a node and two nodes are connected when
the corresponding two vectors have their absolute cosine similarity below
some threshold, then this turns into the NP-complete Clique problem. This
formulation does naturally discard a lot of geometric information, and find-
ing a best (or good) almost orthogonal subset might be computationally
much easier in our case. But with the problem adjacent to an NP-complete
problem we would be wary.

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 23

5.3. Generation results. First of all, in Figures 10, 11, and 12 we show
what kind of distribution of cosine similarities our generators produce in
dimensions 32, 768 and 2048 for specific sizes of vector collections. What
we note is that, especially in the lower dimensions, the energy minimizers
create a bimodal distributions. The others seem more normal distribution-y.

Cosine Similarity Distributions by Generator and Optimizer
Dimension: 32, Vector Count: 100

----- Known Optimal €
Energy Minimization (p=16)

JL projection

label

Random unit vectors

Random + pruning (2x)

JL + pruning (2x) —’—‘

—-1.00 —-0.75 —-0.50 —-0.25 0.00 0.25 0.50 0.75 1.00
Cosine Similarity

FiGure 10. Violin plot of the pairwise cosine similarity dis-
tributions generated by various methods in dimension 32 and
100 vectors. The "known optimal” is from spherical codes
and most likely unattainable with directions.

Then in Figures 13, 14, 15, 16, and 17 we show how the various techniques
compare with a varying amount of vectors in dimensions 32, 128, 512, 768
and 1024. In dimension 32 we also have plotted some data from [Coh23]
that shows the max cosine similarity of the best known corresponding sphere
packing.'4

5.4. Simulation conclusions. In the following Table 7 we’ve collected our
best results and the method we used to acquire it. As thoroughly discussed
above, these should not be considered to exact or even near exact but at
least they should be indicative on what simple approaches can produce.

6. AFTERWORD

So after all of our analysis we can say that there is clearly an interesting
phenomenon present in finding sets of almost orthogonal vectors in high
dimensions. The existing theoretical bounds are still quite far from practical
results.

MHere we again emphasize that our collections of almost orthogonal vectors correspond
to collections of pairs of antipodal points on the sphere. The spherical packing minimizes
have no such limitation of needing to have the antipodal point also present, and thus can
naturally yield better results.

24 RAMI LUISTO

Cosine Similarity Distributions by Generator and Optimizer
Dimension: 768, Vector Count: 3000

Energy Minimization (p=16)

JL projection +
JL + pruning (2x) *
Random unit vectors +
Random + pruning (2x) *

—-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Cosine Similarity

label

Fi1GURE 11. Violin plot of the pairwise cosine similarity dis-
tributions generated by various methods in dimension 768
and 3,000 vectors.

Cosine Similarity Distributions by Generator and Optimizer
Dimension: 2048, Vector Count: 10000

Energy Minimization (p=16)

JL projection *
JL + pruning (2x) *

label

Random unit vectors *

Random + pruning (2x)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Cosine Similarity

FI1GURE 12. Violin plot of the pairwise cosine similarity dis-

tributions generated by various methods in dimension 2048
and 10,000 vectors.

From the point of view of e.g. the BERT language model, what we’ve
noted is that with thresholds around 0.1 we can fit an order of magnitude
more almost orthogonal vectors in R7%® than what we get from the basis
vectors, which goes to show tha there is ”a lot of space in the geometry” of
R76® for lossily storing information as directions.

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 25

Vector Count vs Max |Cosine Similarity| (Dimension 32)

0.71
0.6
0.51
=
s
£ 0.4
n
o
£
@
o
<03
x
)
= |\ 1, T e
0.2 e ————————
—e— energy_minimization
energy_minimization_pruned_100
0.14 —e— johnson_lindenstrauss
—e— johnson_lindenstrauss_pruned_100
<+— random_normal
—e— random_normal_pruned_100
0.01 —e~ Known Optimal
0 100 200 300 400 500
Vector Count
FIGURE 13. All vector counts in dimension 32.
Vector Count vs Max |Cosine Similarity| (Dimension 128)
0.40 -
.
o
0.35 1 — bt
0.30 1
— 0.254
z
kS
£
v 0.201
@
£
7}
3
o
015
=
0.10 1
—e— energy_minimization
0.05 energy_minimization_pruned_100
—e— johnson_lindenstrauss
—e— johnson_lindenstrauss_pruned_100
+— random_normal
0.00 —e— random_normal_pruned_100

T T T T
0 100 200 300 400 500
Vector Count

FIGURE 14. All vector counts in dimension 128.

Many of the approaches mentioned here would benefit from a deep dive
analysis, and we list some of them in the next subsection.

6.1. Possible future avenues of study. We list here some research ques-

tions that we found interesting, but did not have time to go more into and
are not planning to work on in the near future.

(1) Let’s assume that the internal model of an language model has fixed

K content directions in R7%®. Then look at various shapes in R,

26

Max |Cosine Similarity|

0.08

RAMI LUISTO

Vector Count vs Max |Cosine Similarity| (Dimension 512) (Count > 512)

0.184 —e— random_normal_pruned_100
) johnson_lindenstrauss_pruned_100
+— energy_minimization
0.16 //

0.14 1
0.12 4 ps

0.10 »”

0.06 1 o

Max |Cosine Similarity|

0.14 4

0.12 4

0.10

0.08

0.06

2000 4000 6000 8000 10000
Vector Count

F1GURE 15. Generating more vectors than the dimension in
dimension 512.

Vector Count vs Max |Cosine Similarity| (Dimension 768) (Count > 768)

—e— random_normal_pruned_100
johnson_lindenstrauss_pruned_100
energy_minimization

-

T T T T T
2000 4000 6000 8000 10000
Vector Count

FIGURE 16. Generating more vectors than the dimension in
dimension 768.

and map these to R7%® in some way that maps the K basiss vectors
to K-almost orthogonal vectors. (E.g. Johnson-Lindenstrauss style
random projection techniques). Look at the distributions of the
cosine similarities, is it common for the distributions to resemble

those in Figure 17

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 27

Vector Count vs Max |Cosine Similarity| (Dimension 1024) (Count > 1024)

+— random_normal_pruned_100
johnson_lindenstrauss_pruned_100 - 2
+— energy_minimization - -

0.12 4 -—
-
-

—

-
-

o

H

=)
L

Max |Cosine Similarity|
1)
=}
®
)

2000 4000 6000 8000 10000
Vector Count

FI1GURE 17. Generating more vectors than the dimension in
dimension 1024.

k\d | 32 64 128 256 12 768 024 2048

40 10.1184 0 0 0
60 | 0.1637 0O 0 0
100 | 0.2092 0.1099 O 0
200 | 0.2577 0.1503 0.0788 0
400 | 0.3110 0.1903 0.1102 0.0564 0
600 | 0.3416 0.2129 0.1258 0.0706 0.0330 O

800 | 0.3713 0.2286 0.1388 0.0786 0.0422 0.0252
1000 | 0.3887 0.2407 0.1482 0.0865 0.0472 0.0320 O

1500 | 0.4109 0.2654 0.1654 0.1008 0.0573 0.0410 0.0323
2000 | 0.4241 0.2838 0.1764 0.1075 0.0644 0.0467 0.0376
3000 | 0.4439 0.3116 0.1968 0.1218 0.0749 0.0567 0.0458 0.0316
5000 | 0.4752 0.3432 0.2219 0.1406 0.0900 0.0673 0.0567 0.0406
8000 | 0.4976 0.3658 0.2455 0.1604 0.1034 0.0823 0.0707 0.0525

OO OO W!m
OO O OO

1
0
0
0
0
0
0
0

OO OO OO O oo

[an}

TABLE 7. Best achieved max | cos| by (k, d).

(2) Compressed sensing (see e.g. [Mac09] or [Don06]) feels to have some
similar ideas of doing high-dimensional analysis in smaller dimen-
sions. In a few brief attempst we didn’t find a good connection yet,
theoretically or numerically, but we feel there might be something
useful in here.

(3) A deeper dive to the ideas behind the Kabatianskii-Levenshtein
bound would be interesting. We doubt that the bounds are closer to
optimal than our numerical examples, but it would be valuable to
know.

28

[AAA*23]

[Ada60]
[Ant23]

[AS48]

[Ax115]
[BMR*20]

[BTB*23]

[CKGT19]

[CKM*17]

[CND*23]

[Coh16]
[Coh23]
[CZ14]

[DCLT18]

[DGO3]

[Don83|
[Don06]
[Duc24]

[EHO"22]

RAMI LUISTO

REFERENCES

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro
Cappelli, Ruxandra Cojocaru, Mérouane Debbah, Etienne Goffinet, Daniel
Hesslow, Julien Launay, Quentin Malartic, et al. The falcon series of open
language models, 2023. arXiv preprint arXiv:2311.16867, 2023.

John Frank Adams. On the non-existence of elements of hopf invariant one.
Annals of Mathematics, 72(1):20-104, 1960.

Anthropic. Claude 2. https://www.anthropic.com/news/claude-2, July
2023. Blog post, Jul. 11, 2023.

Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions
with formulas, graphs, and mathematical tables, volume 55. US Government
printing office, 1948.

Sheldon Axler. Linear algebra done right. Springer, 2015.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. arXiv preprint
arXiw:2005.14165, 2020.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam
Jermyn, Tom Conerly, Nick Turner, Cem Anil, Carson Denison, Amanda
Askell, et al. Towards monosemanticity: Decomposing language models with
dictionary learning. Transformer Circuits Thread, 2, 2023.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,
Guillaume Wenzek, Francisco Guzmén, Edouard Grave, Myle Ott, Luke
Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual representa-
tion learning at scale. arXiv preprint arXiw:1911.02116, 2019.

Henry Cohn, Abhinav Kumar, Stephen Miller, Danylo Radchenko, and
Maryna Viazovska. The sphere packing problem in dimension 24. Annals
of mathematics, 185(3):1017-1033, 2017.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gau-
rav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sut-
ton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with path-
ways. Journal of Machine Learning Research, 24(240):1-113, 2023.

Henry Cohn. A conceptual breakthrough in sphere packing. arXiv preprint
arXiw:1611.01685, 2016.

Henry Cohn. Table of spherical codes. https://spherical-codes.org/,
2023. Archived at https://hdl.handle.net/1721.1/153543.

Henry Cohn and Yufei Zhao. Sphere packing bounds via spherical codes.
2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiw preprint arXiw:1810.04805, 2018.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of
johnson and lindenstrauss. Random Structures € Algorithms, 22(1):60-65,
2003.

Simon K Donaldson. An application of gauge theory to four-dimensional
topology. Journal of Differential Geometry, 18(2):279-315, 1983.

David L Donoho. Compressed sensing. IEEE Transactions on information
theory, 52(4):1289-1306, 2006.

John C. Duchi. Statistics and information theory (lecture notes). https:
//web.stanford.edu/class/stats311/lecture-notes.pdf, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom
Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn
Drain, Carol Chen, et al. Toy models of superposition. arXiv preprint
arXiv:2209.10652, 2022.

[Ehrl7]

[Eth19)]

[FG16]

[Fre82]
[Halo5]

[Hat05]
[HBM™*22]

[HCH* 23]

[JL*84]

[JSR*24]

[LCC*22]

[LCGT19]

[Led01]

[LOG19]

[LSFA'23]

[Mac09]
[Mat13]

[MBV17]

[Mik13]
[MRT18]

[Mus18]

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 29

Paul Ehrenfest. In what way does it become manifest in the fundamental
laws of physics that space has three dimensions. In Proc. Amsterdam Acad,
volume 20, page 200, 1917.

Kawin Ethayarajh. How contextual are contextualized word representations?
comparing the geometry of bert, elmo, and gpt-2 embeddings. arXiv preprint
arXiv:1909.00512, 2019.

Carlos Fernandez-Granda. Lecture notes 5: Random projections.
https://cims.nyu.edu/~cfgranda/pages/0BDA_springl6/material/
random_projections.pdf, 2016. Accessed: 2025-08-20.

Michael Hartley Freedman. The topology of four-dimensional manifolds.
Journal of Differential Geometry, 17(3):357-453, 1982.

Thomas C Hales. A proof of the kepler conjecture. Annals of mathematics,
pages 1065-1185, 2005.

Allen Hatcher. Algebraic topology. 2005.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language
models. arXiv preprint arXiv:2203.15556, 2022.

Tom Henighan, Shan Carter, Tristan Hume, Nelson Elhage, Robert Lasenby,
Stanislav Fort, Nicholas Schiefer, and Christopher Olah. Superposition, mem-
orization, and double descent. Transformer Circuits Thread, 6:24, 2023.
William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz map-
pings into a hilbert space. Contemporary mathematics, 26(189-206):1, 1984.
Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch,
Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. Mixtral of experts. arXiv preprint
arXiv:2401.04088, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrit-
twieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin
Dal Lago, et al. Competition-level code generation with alphacode. Science,
378(6624):1092-1097, 2022.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of
language representations. arXiv preprint arXiv:1909.11942, 2019.

Michel Ledoux. The concentration of measure phenomenon. Number 89.
American Mathematical Soc., 2001.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ili¢,
Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, Frangois Yvon,
Matthias Gallé, et al. Bloom: A 176b-parameter open-access multilingual
language model. 2023.

Dana Mackenzie. Compressed sensing makes every pixel count. What’s Hap-
pening in the Mathematical Sciences, 7:114-127, 2009.

Jiri Matousek. Lectures on discrete geometry, volume 212. Springer Science
& Business Media, 2013.

Jiagi Mu, Suma Bhat, and Pramod Viswanath. All-but-the-top: Sim-
ple and effective postprocessing for word representations. arXiv preprint
arXiv:1702.01417, 2017.

Tomas Mikolov. Efficient estimation of word representations in vector space.
arXiw preprint arXiw:1301.3781, 2013.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. MIT press, 2018.

Oleg R Musin. Five essays on the geometry of 14sz16 fejes téth. In New Trends
in Intuitive Geometry, pages 321-333. Springer, 2018.

30
[Ope23]

[PH23]

[RBC*21]

[RKR21]

[RNST18]

[Rol03]

[RSRT19]

[RWCT19]

[SDCW19]

[SWL*19]

[TCM*24]

[Teg97]

[TLIT23]

[TMS 23]

[TVWW22]
[Verl8]
[Vial7]

[WCCT24]

RAMI LUISTO

OpenAl. Mistral: Efficient super-resolution language models. arXiv preprint
arXiv:2306.09617, 2023.

Sundar Pichai and Demis Hassabis. Introducing gemini: our largest
and most capable ai model. https://blog.google/technology/ai/
google-gemini-ai/, December 2023. Google Keyword blog post, Dec. 6,
2023.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoff-
mann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Su-
sannah Young, et al. Scaling language models: Methods, analysis & insights
from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology:
What we know about how bert works. Transactions of the association for
computational linguistics, 8:842—-866, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.
Improving language understanding by generative pre-training. 2018.

Dale Rolfsen. Knots and links. Number 346. American Mathematical Soc.,
2003.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners. OpenAl
Blog, 1(8), 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
bert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108, 2019.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and
Haifeng Wang. Ernie: Enhanced representation through knowledge integra-
tion. arXww preprint arXiv:1904.09223, 2019.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton
Bricken, Brian Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy
Jones, Hoagy Cunningham, Nicholas L Turner, Callum McDougall, Monte
MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua
Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scal-
ing monosemanticity: Extracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024.

Max Tegmark. On the dimensionality of spacetime. Classical and Quantum
Gravity, 14(4):L69, 1997.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.18971, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhar-
gava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023.

Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Natural language
processing with transformers. ” O’Reilly Media, Inc.”, 2022.

Roman Vershynin. High-dimensional probability: An introduction with appli-
cations in data science, volume 47. Cambridge university press, 2018.
Maryna S Viazovska. The sphere packing problem in dimension 8. Annals of
mathematics, pages 991-1015, 2017.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar
Hallstrom, Said Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak,
Tom Aarsen, et al. Smarter, better, faster, longer: A modern bidirectional

A SHORT SURVEY ON ALMOST ORTHOGONAL VECTORS 31

encoder for fast, memory efficient, and long context finetuning and inference.
arXiw preprint arXiw:2412.13663, 2024.

[xT24] xAI Team. Open release of grok-1. https://x.ai/news/grok-os, March
2024. Blog post, March 17, 2024.

[YDYT19] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhut-
dinov, and Quoc V. Le. Xlnet: Generalized autoregressive pretraining for
language understanding. arXiv preprint arXiv:1906.08237, 2019.

FACULTY OF INFORMATION TECHNOLOGY, P.O. Box 35 (MATTILANNIEMI 2), FI-
40014 UNIVERSITY OF JYVASKYLA, FINLAND AND DIGITAL WORKFORCE SERVICES MECHE-
LININKATU 1 A, 00180 HELSINKI, FINLAND AND DEPARTMENT OF MATHEMATICS AND
STATISTICS, P.O. BOX 68 (PIETARI KALMIN KATU 5), FI-00014 UNIVERSITY OF HELSINKI,
FINLAND

Email address: rami.luisto@gmail.com

