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1 Introduction

This thesis considers a subfield of artificial intelligence called Natural Language Processing

(NLP). More specifically we study a language model named BERT, based on the so called

transformer architecture. Like many other NLP systems, BERT relies on transforming input

text into internal representations called embedding vectors. These embedding vectors live in

a high-dimensional Euclidean space and encode both syntactical and semantical content of

the input text. Understanding these embeddings is crucial not only to a deeper understanding

of the BERT model and other language models like it, but also for various practical tasks.

Indeed, the final BERT output embedding layer can be used as a connection point for fur-

ther neural network layers, as input features for other machine learning algorithms, or as a

numerical representation of a piece of text corpus to enable data search and analysis.

In this thesis we study the structure of the transformer architecture in general and the BERT

model in particular, with a deep focus on the embedding vectors and the embedding spaces

they reside in. We’ll use both synthetic and real-world data to get a better grasp on both the

theory and application of the BERT embedding vectors. Though we focus on the particular

BERT model, many of the main ideas here should transfer to aid in understanding other

transformer based models like FinBERT, RoBERTa, GPT or LLaMA.

To focus our efforts, we list the following concrete research questions for our work. We see

these as three sides of the same coin.

1. The transformer architecture contains conceptually different types of embedding vec-

tors like positional encodings and semantic input embeddings of individual tokens.

Can we detect the difference between these types of vectors?

2. As we’ll learn in the following chapters, the transformer forms the embedding vec-

tors as a sequence of embeddings that gain more and more context awareness as they

evolve. Can we see this progression?

3. The transformer produces embedding vectors that encode the semantic content of both

the individual tokens and the input text as a whole. Suppose we alter the semantic

content of the input text. Can we then detect changes in:

1



(a) The topological structure of the embedding vectors?

(b) The linear algebraic structure of the embedding vectors?

(c) The geometrical structure of the embedding vectors? (In the setting of larger

collections of text and the data clouds their embedding vectors form.)

1.1 Contents of this thesis

We’ll begin here by describing the aims and context of this thesis in a bit more detail. Before

describing what we do, we’ll tell first what we won’t do; i.e. we give an exposition on the

context of this study.

1.1.1 What we won’t do in this thesis

In mathematics there is sometimes less value in a theorem than in the counterexample that

shows the limits of what can be proven. In the same spirit: what we do in this thesis is only

a small part of the area we are working in, and so in this subsection we’ll look what other

things we could do but don’t.

Understanding how modern language models work is a topic of active research. Even if we

ignore the so called Large Languge Models (LLMs) like GPT 3+, LLaMA or PORO, the

"small" language models like BERT, RoBERTa, ELMo, GPT-2, T5 or ERNIE of "only" a

few hundred million parameters are still quite opaque with respect to their inner workings.

There are various ways that one can approach in trying to understand the behaviour of these

models. All of these approaches are based on the idea that the models are too big to under-

stand by studying them from first principles, e.g. by looking at the model "one neuron at a

time". Instead we are more in the realm of natural science where we run experiments and

create theories from the results. For approach methodologies we list the following, but we

emphasize that this is not a comprehensive or authorative list on the topic.

1. We can study the embedding vectors of various text collections in the model. As men-

tioned, the embedding vectors form an internal representation of text for the model,

and understanding both the formation of singular embeddings and the shape or geom-
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etry of larger embedding point clouds can be very useful for understanding the models.

See e.g. Ethayarajh 2019 or Reif et al. 2019.

2. We can study the so called attention mechanisms of the model. These are the inter-

nal system of the transformer models that have a crucial role for the generation of

embedding vectors.1 See e.g. Kovaleva et al. 2019

3. We can do so called ablation studies where we retrain the model while removing some

parts of the model, training data or training schema. The changes to the performance

then yield some information on the inner workings. See e.g. Michel, Levy, and Neubig

2019, or again Kovaleva et al. 2019.

4. We can try to prune our models, that is, we can try to see how many weights or neurons

can be removed from the model after the training without hindering its behaviour.

Removing neurons and observing the changes to performance should yield information

on which parts of the model are responsible which tasks. See e.g. Li et al. 2020.

5. We can test how the model performs on various benchmark tasks and on varying data

and then try to infer why observed behaviour happens.2

6. We could use comprehensive existing tools like BERTviz3 (Vig 2019) or SLIPMAP

(Björklund, Seppäläinen, and Puolamäki 2024) to analyze and visualize the model

structures.

These are of course not all disjoint approaches and many research approches combine many

of them.

So there are several different interesting approaches to study language models. In this thesis

we’ll focus only on a narrow sector of the possibilities, namely the study of embedding

spaces via looking at the embedding vectors of natural text.

1. We’ll go through these in detail in the next chapter.
2. This is too generic of an idea for us to point to a single paper. E.g. Rogers, Kovaleva, and Rumshisky

2020 contains descriptions of several benchmarks and the performance of various models on them.
3. https://github.com/jessevig/bertviz

3
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1.1.2 What we’ll do in this thesis

As mentioned, our topic of interest in this thesis are the embeddings. But how shall we study

them? Many great things in the world have been brought about from the idea of "let’s disturb

it a bit and see what happens" with calculus and snowglobes being prime examples. We will

follow this path and, after getting the basics in order, do various experiments where we vary

the input and observe the changes.

More concretely; after familiarizing ourselves with the tranformer architecture, we’ll first

study the basic ideas of the embeddings spaces by looking the embeddings of various syn-

thetic example sentences. We’ll also look at the point cloud of the embeddings of a random

sampling of texts from a few open source sources to get some feel for the geometric shape of

the embedding space. We also probe the formation and evolution of the various types of em-

beddings and aim to observe some of the classical structures that there are in the embedding

spaces and their interrelations.

1.1.3 Structure of the thesis

In the Chapter 2 we’ll describe some of the background for this thesis and describe some

of the conceptual challenges in trying to comprehend language models. We also discuss

about the techniques and tools we use for visualizing and understanding of high dimensional

data. We go through the licensing of the datasets and images we use, and finish with some

recommendations for prerequisites and further study.

In Chapter 3 we study the transformer architecture. We will begin by going though the

history of transformers. We’ll set up the context of RNNs and LSTMs where transformers

emerged and then study the recent proliferation of the field by various transformers. The

chapter continues with a somewhat through study of the architectures of both the original

transformer and the BERT model.

Chapter 4 is dedicated fully to the embedding spaces of transformer models. We discuss

the structure of the embedding spaces and do various simulations and tests on the various

embeddings of both singular sentences or tokens, and of larger data clouds.
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Finally in Chapter 5 we will present our conclusions and discuss further interesting avenues

of study.
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2 Preliminaries

In this chapter we go through some general background. We start with notation and defini-

tions and then move on to various topics in the conceptual space of language models and in

some tools that can be used to fathom data in higher dimensions.

2.1 Some notation and definitions

We denote by N= {0,1,2, . . .} the natural numbers, including 0, and likewise use the short-

hand of R+ for the non-negative real numbers [0,∞).

By Rn we denote the n-dimensional Euclidean space for n ≥ 1, i.e. the set

{(x1,x2, . . . ,xn) | xi ∈ R} .

We often denote the vectors in Rn by v, w, u or some other bold font letter. In these cases we

implicitly assume that the coordinates of the vector are denoted by subscripts of an unbold-

ened letter, e.g. the components of the vector w are (w1,w2, . . . ,wn), and we tacitly assume

that the dimension n is clear from the context.

We equip Rn with the inner product (also called the dot product)

⟨·, ·⟩ : Rn ×Rn → R, ⟨v,w⟩=
n

∑
i=1

viwi

and the Euclidean norm

∥ · ∥ : Rn → R+, ∥v∥=
√
⟨v,v⟩=

√
n

∑
i=1

v2
i for v ∈ Rn.

A vector with length 1 is called a unit vector. We call two vectors v and w orthogonal if

⟨v,w⟩= 0, and orthonormal if they are orthogonal unit vectors.

With the inner product we can also define a crucial concept in this thesis - the cosine simi-

larity.

Definition 2.1.1. Let v,w be two vectors in Rn. We set their cosine similarity to be the

number

cs(v,w) =
⟨v,w⟩

∥v∥ · ∥w∥
.

6



Note that orthogonal vector have cosine similarity of 0, and the cosine similarity of a vector

with itself is always 1. Furthermore, scaling of either vector by a non-zero scalar has no

effect on the vectors’ cosine similarity.

The standard interpretation is that the cosine similarity measures the angle between two

vectors, though with the difference that 0 means orthogonality and 1 means having the same

direction. The cosine similarity is a sort of distance measure, though it is not a metric - one

might call it something like a similarity instead. Note also that the cosine similarity is the

very same object we see in the cosine rule of planar geometry:

cos(θ) =
⟨v,w⟩

∥v∥ · ∥w∥
,

where θ is the angle between the two vectors – hence the name. Note that this interpre-

tation translates naturally to higher dimensions: any two vectors in Rn that are not scalar

multiples of each other span a 2-dimensional vector space. We can naturally identify that

2-dimensional vector space with R2 via a linear isometry which preserves both the inner

product and the norm, and thus the cosine similarity.

For an m×n matrix M and an n-dimensional vector v we denote the matrix product of M and

v simply as M×v, i.e. we set

M×v =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

... . . . ...

am,1 am,2 · · · am,n




v1

v2
...

vn

=


∑

n
j=1 a1, jv j

∑
n
j=1 a2, jv j

...

∑
n
j=1 am, jv j

 .

2.1.1 A few words on complex indexing

Calculations with vectors and matrices can be somewhat heavy in their indexing syntax.

We try to avoid situations that require complex indexing as much as we can. The biggest

exception will occur in Chapter 3 when we discuss the so called attention mechanism of

a transformer. Without going into too many details, there will be transformer blocks that

contain several attention heads, but we do not try to track these with indeces, nor do we index

any vector components or matrix values. So when working through that section we ask the

reader to keep in mind that whenever we list matrix products or other vector operations, the
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sub-indeces only index the various embedding vectors within the block that we are studying

at the moment.

As we’ll briefly mention in Section 3.2.6 when building these systems for actual pipelines

the situation is a much more subtle. In particular when using CUDA or other libraries that get

their true power from parallization capabilities and it is paramount to get various dimensions

to match up in efficient ways. But all of this is way beyond the scope of our thesis.

2.2 The maskless Shoggoth on the left – the incomprehensible internal

world of language models

In the world of the large language models, the difference between the language model GPT

and the user-friendly chatGPT system is sometimes described by saying that GPT is "the

maskless Shoggoth on the left" and chatGPT is "the masked Shoggoth on the right" – see e.g.

(Alexander 2024) and the references therein. This is a nod to the Cthulhu Mythos from the

literature of H.P. Lovecraft and refers to the fact that especially the large language models are

truly uncomprehensible and understand language in a completely different way that humans

do.

The so called "small" language models like BERT are not much more transparent, but their

nicknames are not references to elder gods. We hypothesize that this is mostly due to the fact

that their performance is not as human-like as with the LLMs and thus they create less of an

"uncanny valley" effect. Regardless, our point here is that we should not expect language

models like BERT to map directly to the same linguistic concepts that humans use.

The BERT architecture is modular and built from components that have clear architectural

boundaries, but a given neuron in this 110M parameter neural network doesn’t "know" if

its inputs and outputs are on the boundaries of these components or not. So even when we

mention research that has identified specific blocks to correlate between certain linguistical

phenomenon, we should remember that this should not be expected in general. Instead we

feel that the architecture simply provides a canvas within which the model can learn a sub-

structure that fits the training data. This idea is supported by the various pruning studies,

see e.g. (Guo et al. 2019), (Gordon, Duh, and Andrews 2020) and (McCarley 2019), which
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suggest that a large portion of the weights in the BERT model can be removed with very

little effect on the performance. In particular (Gordon, Duh, and Andrews 2020) find that

even 30%-40% of BERT’s weights can be dropped with very small detrimental effects. See

also (Li et al. 2020), where they argue that it is often better to train a large model and prune

it aggressively than to train a smaller model and prune it just a little.

This idea of the full set of model parameters providing an ambient space for the "true" model

is mirrored in the embedding spaces. As we shall see, the 768-dimensional spaces are not

evenly used to host the embedding vectors.1 Thus we think it is not unreasonable to assume

that there is a "true" embedding space2 that is situated within the ambient 768-dimensional

Euclidean space. This "true" embedding space forms the model’s internal model of language,

and we study it with the distorting lens of projecting parts of it to human concept space.

2.3 On undertanding and visualizing large dimensions

A large part of our main work will be in trying to understand the structure the embedding

spaces of the BERT-style models. Our main tools will be studying either singular or few

embedding vectors "by hand" or by analyzing the point clouds we get from embedding larger

collections of text data. We can barely visualize four dimensions, so getting a grasp on these

768-dimensional point clouds can be very challenging.

Part of the issue relates to topics mentioned in Section 2.2. We have little hope that the

internal concepts of the language model we study are aligned with familiar concepts. The

issue is exasparated by the fact that the embedding vectors live in the Euclidean space R768,

since high-dimensional geometry is not only hard to visualize but also often unintuitive. Here

we also run into the problem that even if the embeddings correspond well to linear algebra,

we have no reason to assume that the language model has "chosen" the standard basis for its

concepts. By this we mean that the model has a priori no reason to use individual neurons

1. We mean this in the descriptive sense. Naturally the finite set of all possible texts that humans can form

before the heat death of the universe cannot be evenly distributed in any unbounded Euclidean space. What we

mean here, and what we’ll see later on, that the distribution of the embeddings is remarkedly skewed from any

uniform distribution that we might manually construct.
2. Well, several embedding spaces as we’ll see.
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for specific tasks but can instead encode results in a superposition of many neurons.3

In any case, since we can’t rely on magically finding a special basis with which to view our

embedding spaces, we will have to use other tools to get a better idea of the structure of our

high dimensional point clouds. Even with a perfect selection of a basis, though, there would

be secondary issues with the fact that the structure of e.g. a 500-dimensional torus embedded

in some quadrant of R768 probably wouldn’t be evident from looking at the raw coordinate

values of some sampling of vectors. For the purposes of this thesis, we have automated some

tools to produce various two dimensional graphs and projections of these high dimensional

data clouds. The aim of these is to help understand the approximate dimension, shape, size

and location of the data clouds. We call the combination/superposition of these properties

the geometry of a datacloud. Though the full geometry of the data still cannot be captured

in these few descriptive extracts, we will nevertheless be able to describe some prominant

aspects of it.

As mentioned, the geometry of a high-dimensional datacloud is not trivial to comprehend

from statistical figures. A powerful, though limited, tool is that of projecting data to smaller

dimensions, in particular to 2D. For this we dedicate its own subsection.

2.3.1 Projections to 2D

A natural way for us to visualize high-dimensional data is to project the data to two dimen-

sions which we can easily show on a screen or a printed page. In this regard the classical tool

is PCA or Principal Component Analysis, see Jolliffe 2002. This method is based on finding

the eigenvectors of the covariance matrix of the data and projecting all of the data to the

subspace spanned by the two vectors with the largest eigenvalues. If you imagine a flattened

ellipsoid in three dimensions, it will have three axes and for a statistically significant data

sample from this shape PCA will detect an approximation of the two largest axes. We can

then orthogonally project the data to two-dimensional subspace spanned by these two direc-

tions. PCA will be one of our major tools, as the result will be a linear orthogonal projection

of the original data, and thus preserve many of the algebraic quantities we are interested in.

3. See e.g. Olah et al. 2022 for discussion how these superpositions might function in a transformer.
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Besides PCA, ther are two non-linear projection methods widely in use: t-distributed Stochas-

tic Neighbor Embedding (t-SNE), see Van der Maaten and Hinton 2008 and Uniform Mani-

fold Approximation and Projection for Dimension Reduction (UMAP), see McInnes, Healy,

and Melville 2018. The t-SNE method is based on modeling the high-dimensional data and

a prospective 2D projection dataset by forming a probability distribution of the pairwise dis-

tances of points. The method then tries to minimize the Kullback-Leibler divergence of these

two distributions.4 The UMAP is based on modeling the high-dimensional dataset and its

prospective projection as nearest neighbour graphs. Like the t-SNE, it then works to mini-

mize various distortions between these structures – we won’t go into more detail here and

refer the interested reader to the references mentioned.

The crucial point here is remembering that PCA is a linear projection, while both t-SNE and

UMAP allow for various distortions. The latter two are often better in creating visualizations

where components that are clearly separate in high dimensions can also be seen to differ

in the projection. For an example, we study how a Hopf link might be projected in these

systems. Here a Hopf link is a fancy word for having two circles or rubber bands that are

linked in R3. In Figure 1 we see both the Hopf link and its PCA projection.

2
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(a) Hopf link in R3 (b) PCA projection of the Hopf link.

Figure 1: The Hopf link and its PCA projection.

4. The Kullback-Leibler divergence is sometimes described as "the average amount of surprise you experi-

ence if you think you are sampling from distribution X while you actually are sampling from distribution Y ".

Here by "surprise" we refer to the information content of a random event. For further information we refer to

the classical book MacKay 2003.
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To contrast this, in Figure 2 we have the t-SNE and UMAP projections of the Hopf link.

Both of these methods allow for several different parameters that affect their behaviour;

we’ve shown here a few. Note that from these projections it is easier to grasp the true fact

that there are two separate components in the data, both of which are circular. What is lost

completely, however, is the fact that these components are exactly circles and linked.

We wish to emphasize that none of the methods PCA, t-SNE nor UMAP use the labels we

have for the data points. All of the projection methods create the projection based on the full

data cloud and the coloring of the components we have is added after the fact.

(a) t-SNE projections of the Hopf link with a

few different parameters.

(b) UMAP projections of the Hopf link with

a few different parameters.

Figure 2: The t-SNE and UMAP projections of the Hopf link with various parameters.

We wish to conclude by emphasizing the fact that t-SNE and UMAP are strongly non-linear

projections. As we saw in the Hopf link example (see Figures 1 and 2), they are able to

visualize for us data components that are separated from each other in some intuitive sense,

even in cases where the PCA can not detect a separation. The downside here is that this

comes with the cost of geometry distortion. For example in the Hopf link example the

t-SNE and UMAP methods are able to display that there exists two distinct components

in the data that do have some distance between them. But in reality, even though there

are two topological components, they cannot be separated by any hyperplane (or even a
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toplogical plane). Furthermore any properties related e.g. to distance or cosine similarity

are not preserved in the projection. But even with these limitations these tools can be very

useful – if we imagine that instead of knotted loops our embedding point clouds in R768

contain several 766-dimensional objects that have been knotted to each other5, the fact that

this structure can be visualized by the non-linear projections can be very illustrative. In any

case, we advice caution when interpreting any results that try to condense high-dimensional

data to only a few dimensions, be the method UMAP or histograms.

2.3.2 PCA-based dimensional analysis

Besides projection, we can use PCA to estimate the dimension of a data cloud. For an exam-

ple we look at 10-dimensional dataset with three components. The first one is an embedded

7-dimensional unit cube [0,1]7×{0}3 that has been shifted off-origin by the vector (2, . . . ,2).

The second one is an embedded 8-dimensional unit cube [0,1]8×{0} rotated randomly. The

third is just an embedded 9-dimensional unit cube [0,1]9 ×{0}.

In Figure 3 we plot the results of taking the PCA projections of this dataset, both in total

and each component separately to dimensions 1-10 and seeing how much of the variation of

the data is explained by the projection.The graph clearly captures the differing dimensional

structure of the components since we know that they are there, but from the total dataset

curve we can get very little insight in this case.

2.4 On various other things related to this thesis

We conclude the introductory section with a few miscellaneous topics.

5. Knots and links in R3 are just 1-dimensional spheres with complex embeddings, and similarly you can

"knot" (n− 2)-dimensional spheres in Rn. We’re not going to give an example as we suspect that a giving

concrete example of a knotted 766-sphere might is at least a bit non-trivial. For anyone interested, we’d suggest

starting with repeated double suspensions of the Hopf link, as these might be knotted.

13



Figure 3: PCA-based dimension estimation.

2.4.1 On preliminary requirements for the reader

The main purpose of this thesis has been to help the author to learn the topic. We have,

however, written this thesis in a way that we hope might be useful for other people wishing to

study the topic as well. In this spirit we note that for anyone who wishes to thoroughly study

this work, you should first have a base knowledge of deep learning and neural networks. At

least at the level of topics like what are neurons, backpropagation, hidden layer, gradient

descent, layer normalization and so forth.

For anyone feeling insecure in their level of background information, you might try to read

this thesis anyway and skip any of the technical parts that are beyond your current grasp and

rely on the high-level descriptions. Alternatively, or in parallel, you might want to read up

on these topics. To get started, we suggest the following sources, with a roughly increasing

order of comprehensiveness of the topic.

1. The "elements of AI" MOOC by the University of Helsinki and Reaktor.

2. The Youtube channel "3Blue1Brown" and their AI-video tutorials.

3. The Coursera course on deep learning by Andrew Ng.

4. The book Prince 2023.
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2.4.2 What to read after this thesis?

If this topic seems interesting, we recommend the following sources for further study:

1. "Read the old masters", i.e. look at the original transformer and BERT papers from a

few years ago: Vaswani et al. 2017 and Devlin et al. 2019. These are quite readable

and well written in our opinion.

2. The excellent survey Rogers, Kovaleva, and Rumshisky 2020 collects many topics of

what was known about the behaviour of BERT in 2020.

3. The book Tunstall, Von Werra, and Wolf 2022 for anyone interested in building trans-

former-based systems in practice.

4. The book MacKay 2003 for the mathematical basics of information theory and then

some ML topics.

5. The book Prince 2023 for a comprehensive modern study on deep learning.

2.4.3 Images and licenses

The supermajority of the images and graphs here have been generated by the author with

Python, matplotlib, seaborn, MS Visio or Inkscape. The few images borrowed from arti-

cles or books are used within their respective licenses, which are pointed out in the Figure

captions.

We use various data sources for linguistical text.

1. We scrape a collection of random articles from Wikipedia to study the geometry of

embeddings. The scraping script is available at https://github.com/ramiluisto/NLP_

toybox/blob/main/src/wikipedia_datafetch.py and uses the Wikipedia API according

to their licence.

2. We use WordNet data, see Miller 1995, as a source of a large collection of English

nouns, verbs and adjectives. The WordNet licence is available at https://wordnet.

princeton.edu/license-and-commercial-use.

3. We use a Kaggle dataset available at https://huggingface.co/datasets/tweet_eval/tree/

main/emotion for a source of random tweets. This dataset is connected to the paper

(Barbieri et al. 2020) and used within its license.
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3 An overview of the transformer architecture

In this chapter we’ll focus on the general idea and structure of the transformer architecture,

both in general and the BERT model in particular. We’ll first shortly discuss the history

and context of where the transformers appeared. We then move on to describe the original

transformer architecture from Vaswani et al. 2017 in some detail. We continue by studying

how the BERT model is put together and finally finish the chapter by discussing how it was

trained.

3.1 The technological setting where transformers appeared

To set the scene, we’ll start by looking at the history of transformers in the context of neu-

ral networks called Recurrent Neural Networks (RNNs). Before the transformer revolution

started in 2017 the NLP neural networks were heavily focused on RNNs. They were used

to the extent that in e.g. 2015 we get blog posts titled "The Unreasonable Effectiveness of

Recurrent Neural Networks" from one of the co-founders of OpenAI; see Karpathy 2015.

The base idea of RNNs is that we start feeding them the input text one word1 at a time. The

RNN is a neural network that then processes the input as any feed-forward neural network,

but the crucial difference is that besides giving an output for this particular word, they also

output an internal state vector that is given as an extra input when the next token is processed.

This gives rise to one of the main problems of RNNs: they are hard to parallelize, especially

at training time. This is an issue when we want to do very deep RNNs or use very large

amounts of data. There are ways to ameliorate the problem, see e.g. Martin and Cundy 2017,

but the parallelization is not a natural property of the RNN architecture.

Another defining challenge with RNNs is that it is hard for RNNs to "remember" connections

between parts of the text that are far apart. This causes issues both at inference time and

training time as gradient decay happens easily and it is hard for the training information

to backpropagate throught the RNN. A very important tool to help with this is the so called

Long Short-Term Memory (LSTM) architecture (see e.g. Hochreiter and Schmidhuber 1997)

1. Or token or some other datum. We’ll use the term word here for simplicity.
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that creates a sort of data channel that the RNN cells can use to pass on (or forget) information

from the distant past.

The transformer architecture provides an answer to both of these issues. The original trans-

former paper (Vaswani et al. 2017) appeared in arXiv in June 2017, with the authors all

working with Google. The success of the new architecture is evident from the fact that only

a year later in June 2018 we get the first GPT-paper (Radford et al. 2018) by OpenAI, and in

October 2018 the BERT architecture is published (Devlin et al. 2019). These were then soon

followed in the next few years by e.g. the further GPT-models by OpenAI, RoBERTa (Y. Liu

et al. 2019), t5 (Raffel et al. 2019) and XLM-R (Conneau et al. 2019), to name a few.

According to (Tunstall, Von Werra, and Wolf 2022) the success and usability of the trans-

former architecture was very much influenced by the following factors:

1. The immense transferability of these models. The pre-trained base models had en-

capsulated language understanding on a very deep level, and many of them could be

fine-tuned to more specific tasks with only a few hours of extra training. These would

often perform better or at least on par with more custom made task-specific models.

2. The HuggingFace library; a portal where large pre-trained ML-models could easily

be shared. This enabled the expensive and resource-consuming pre-training of a large

transformer model to be only done once by a large actor like Google, Meta, or OpenAI,

and the results then fine-tuned by anyone.

3. In (Howard and Ruder 2018) the ULMFiT approach to language model training was

introduced. The paradigm introduced here was to train language models in ways that

make transfer learning more natural, aiding the transformer revolution. We’ll discuss

this in slightly more detail in Section 3.3.3.

We refer the reader interested in more of the history of tranformer models to Tunstall, Von

Werra, and Wolf 2022.
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3.2 The architecture of the original transformer

The original transformer paper Vaswani et al. 2017 was describing a transformer used for

translation, see Figure 4. Their system is built especially for translation tasks and, a priori,

not much else. The BERT model that appeared a few years later in Devlin et al. 2019 had

a different goal. Its whole purpose was to build a foundational model that could be used

for various language tasks with no changes to the base architecture – for most tasks adding

one additional neural network layer called the "head" is enough. Another impactful model

following the original transformer paper was of course the GPT family of models by OpenAI,

only first few of which are openly available. Their focus is less on generic language tasks

and more on text generation, which admittedly can then be used in a very versatile manner

when you have a model as powerful as GPT 3+.

In this section we wish to explain how the transformer architecture works, both in the high

level and also in a somewhat detailed manner. We’ll begin by giving an overview of the so

called encoder part of the original transformer model. Our motivation here stems from the

fact that the encoder part is the component that is used in our main model of interest, i.e.

BERT. After the bird’s eye view of the architecture, we’ll jump into a more detailed view by

studying each part of the encoder part in turn. We conclude the section by discussing how

the decoder part of the transformer differs from the encoder.

Our description of the transformer architecture is based on several sources. The techni-

cal details arise from the original transformer paper (Vaswani et al. 2017), the BERT pa-

per (Devlin et al. 2019) and data extracted from the Huggingface BERT model via the

torchinfo -package; we’ll study this in more detail in Section 3.3.2. Our exposition

is also influenced by the video lecture series of 3Blue1Brown2 and the semi-interactive web-

site https://bbycroft.net/llm. We won’t try to give direct cites of the facts we mention in the

following subsections, as the text represents an amalgamation of the knowlegde, but wish to

emphasize that the exposition here is based on previous work.

2. https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
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Figure 4: Image of the original transformer architecture from Vaswani et al. 2017. Encoder

on the left, decoder on the right. Used within permissions granted by the authors.

3.2.1 A bird’s eye view of the architecture

The Figure 4 shows the original transformer architecture with the encoder on the left and the

decoder on the right. As mentioned, with only a moderate amount of oversimplification, the

major difference between the BERT and GPT families of transformers is that BERTs uses

encoders while GPTs use decoders. From Figure 4 we already note that the encoder and

decoder are quite similar, except that in the decoder there are two attention layers; a masked

attention layer at the start and then a second attention layer that takes in inputs both from the

encoder component and the masked attention layer. Since our major focus in this thesis is
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the BERT style of transformer, we’ll focus for now only on the encoder part, and return to

the decoder and its slightly differing attention strategies at the end.

We’ll first go through the function of the encoder block on high level as numbered in Figure

5. We’ll use the string "Then the bear waited for the door to open with a serendipitous smile."

as our example input.
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Figure 5: Illustration of a tranformer encoder. The "Segment Embeddings" in the figure are

present in the BERT architecture but not in the original Transformer architecture.

1. Tokenization. The first step is to tokenize the string, i.e. turn the string into a sequence

of numbers (or indeces) that the neural network can process. We’ll use the example

tokenization given by the BERT tokenizer here, the original tranformer paper used a

different one so the exact tokenization would be slightly different, but the main idea is

the same. We’ll return to tokenization details in Subsection 3.2.2.

In any case, the BERT tokenizer splits our text to following 18 parts: "’Then’ ’the’
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’bear’ ’waited’ ’for’ ’the’ ’door’ ’to’ ’open’ ’with’ ’a’ ’se’ ’##ren’ ’##di’ ’##pit’ ’##ous’

’smile’ ’.’". Here the "##" prefix means that the word is not preceded by a space or a

sentence start – for other tokens it is assumed to be there. Note that the common words

are all one token, but the less common "serendipitous" is split into several subwords.

Each of these tokens corresponds to a unique token index which is what the transformer

will actually see. For our sentence, the token index list is as follows3; (1599, 1103,

4965, 3932, 1111, 1103, 1442, 1106, 1501, 1114, 1126, 14516, 5123, 3309, 18965,

2285, 2003, 119)

Thus this part has taken in a string S and ouputs a sequence of 18 token indeces. Let’s

call them (t0, t1, . . . , t17). Depending on the ambient system, token index sequences of

length below the maximum window width are sometimes padded with special [PAD]

tokens, but we’ll ignore this topic in this thesis.

2. Input Embeddings. With the sequence of tokens we advance in Figure 5 to the "Input

Embeddings" box. The input embedding are learned vectors, one for each token (in-

dex). For the original transformer paper these vectors have dimension 512, for BERT

they have dimension 768 – following Vaswani et al. 2017 we call this dimension dmodel.

These embeddings are called context-free embeddings, since they are based only on

the token and not on any neighboring tokens or their position in the input text. For

example, both of the tokens "the" in our example input text have the exact same input

embeddings. We’ll analyze the input embedding vectors of the BERT model in more

detail in the next chapter in Section 4.2.2.

Thus this component has taken in a sequence of 18 token indeces, (t0, . . . , t17) and out-

puts a sequence of 18 vectors of length dmodel. Let’s denote these by (E input
0 , . . . ,E input

17 ).

This mapping from indeces to input embedding vector is a straightforward indexing;

there is a matrix of size #(tokenizer vocabulary)×dmodel, and the embedding E input
j is

simply the t j:th row of that matrix.

3. Positional embeddings. After the input embeddings have been generated (or, more

3. If you are following along by testing the tokenization, the BERT tokenization starts this sequence with

an extra token index 101 and ends the sequence with the extra token index 102. These are the special [CLS]

and [SEP] tokens, respectively, and we’ll discuss them further when we study the training of BERT in Section

3.3.3.
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aptly, selected) we move on in Figure 5 and add to them the positional encodings.

They are vectors of same length as the input embeddings, i.e. dmodel. They are added

to the input embeddings to provide information to the neural network about the relative

and absolute position of the tokens. These are simply summed to the input tokens, and

now e.g. the two words "the" have differing embeddings. We’ll study the positional

encodings in much more detail in Section 3.2.4.

So in short, this layer maps the sequence of input embeddings (E input
0 , . . . ,E input

17 ) se-

quence of position enhanced embeddings which we denote by (E in+pos
0 , . . . ,E in+pos

17 ).

Here the j:th position enhanced embedding is then just E in+pos
j = E input

j +POS j where

POS j is the j:th position encoding vector.

4. The Transformer block. Now we move on in Figure 5 to the core idea, the part

that contains the Multi-Head Attention mechanism mentioned in Figure 4. This gray

box is often called a transformer block and it is basic building block of transformers.

There are N of these stacked sequentially. For the original transformer paper N = 6,

for BERT N = 12.

Each transformer block functions by taking in a sequence of embeddings and out-

putting a sequence of embeddings of the same dimensions. So each transformer block

takes in a sequence (E0, . . . ,Ek) of dmodel-dimensional vectors and outputs a sequence

(E ′
0, . . . ,E

′
k) of dmodel-dimensional vectors.

For the first transformer block we feed in the positionally enhanced token embeddings.

With our example sentence we had 18 of these of dimension dmodel, and the transformer

block will output 18 new embedding vectors of dimension dmodel. After the first trans-

former block, these embeddings are called context-aware embeddings since they are

affected by all the other tokens in the input. For example, the sentences "The cat."

and "The hat." would both have different context dependent embedding vector for the

word "The" from this point on.

Now let’s look at the transformer block contents in a bit more detail.

(a) Multi-head attention. For the incoming embeddings there is first a multi-head

attention layer. The multi-part means that we have several attention heads work-
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ing in parallel. To describe the general function of a single attention head let’s

denote the incoming embeddings as E0, . . . ,E17 ∈ Rdmodel – one for each of the

original 18 input tokens. The purpose of an attention head is to produce for each

of the embeddings E j an "attention-based update" ∆E j, which will be then used

to update the embedding via E j 7→ E j +∆E j. The crucial thing here is that the

∆E j vector will depend on all of the other embeddings! In fact what happens is

that for each of the Ei the attention head will produce a so called value vector

Vi, and the vector ∆E j will be a weighted sum ∑i αiVi of these vectors. So in a

sense, each of the other tokens will produce a sort of difference candidate, and

the attention mechanism is responsible for selecting which difference candidates

should be taken into account with the greatest weights. We will return to this in

more detail in Subsection 3.2.5.

From the more functional point of view each of the K attention heads will produce

for each of the 18 tokens Ei an update vector ∆En
i , n = 0, . . . ,K − 1. The multi-

head attention calculates these 18 ·N update vectors in parallel, and updates the

embedding vectors as

Ei 7→ Ei +∆E0
i + · · ·∆EK−1

i =: E ′
i .

(b) First sum and normalization. After this we have what is commonly known as a

skip connection, which we denote by a large ’plus’ for sum, meaning that we add

the original vector Ei to the new vector E ′
i . After this we normalize the result. So

more formally we do

E ′
i 7→ Normalize(Ei +E ′

i) =: EA
i ,

where Normalize(·) is the layer normalization operation.

(c) Feed forward neural network. Now we get our updated embeddings to the feed

forward part of the transformer block, where we have a single fully connected

neural network with one hidden layer. We have dmodel input neurons and dmodel

output neurons. The hidden layer has size 2048 in the original tranformer paper

and 3072 in BERT. It is a single neural network specific for a single transformer

block, and it is applied separately for each embedding EA
i .
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Note that in both the original tranformer architecture and in BERT the hidden

layer in the feed forward neural network is much larger than dmodel.

(d) Second sum and normalization. The result of the Feed Forward layer for

each embedding is then again added to the input EA
i and normalized, i.e. we

get Normalize(EA
i +FF(EA

i )), where Normalize is again the layer normalization

map.

To reiterate the whole transformer block process, we start with an input sequence

(E0, . . . ,E17) of embedding vectors. Then for each j ∈ {0, . . . ,17}, each of the K

multi-attention heads will create an update vector ∆Ek
j that is a function of all the vec-

tors E0, . . . ,E17. These are all added to E j, i.e. we get E ′
j = E j +∑k ∆Ek

j . Then we add

a skip connection and normalize to get EA
j = Normalize(E j +E ′

j). This is then fed to

the FF NN, which is followed by another skip connection and normalization to arrive

at

ET
j = Normalize(EA

j +FF(EA
j ))

where Normalize is once more the layer normalization map.

And thus we have walked our way through a single pass of a transformer block. Note that

after the input token sequence has been turned into a sequence of embedding vectors, each of

the transformer block maps the sequence of embeddings to a new sequence of embeddings

of the same shape and dimension.4 In particular, the final output of the encoder will also be

a sequence of embeddings.

With this bird’s eye view in mind we next turn into looking at each of the parts in more detail.

3.2.2 From words to indeces – tokenization in more detail

There are various ways to tokenize text input to transformers. The base idea here is that

we need to turn the incoming string, i.e. a sequence of characters, into a form that a neural

network can work with. In tokenization we split the incoming string to pre-defined substrings

4. This ’evolution’ of embeddings of identical shape through this process of alternating multi-head attentions

and feed-forward neural networks with interim normalized skip connections is sometimes called a residual

stream.
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called tokens. The collection of all possible tokens of a given tokenization algorithm is called

the vocabulary. The tokenization process is strongly tied to the input embeddings of the

model, and we can think of the tokenization part of the process as the question of specifying

which parts of text ’deserve’ their own input embeddings.

One extremal direction would be to use individual characters as tokens, whence we would as-

sign each possible character a unique integer and work with the incoming text on a character-

by-character basis. This would result in a small vocabulary size, but it would mean that the

model would have to spend a lot of its effort to learn what words are and what they mean.

Also we would ’burn’ a lot of token bandwidth on simple words: the three character se-

quences of "the" and "xqq" would be represented by an equal amount of tokens even though

we see "the" all the time and "xqq" very rarely.5

Another extreme would be to take the collection of all possible words as the token collection.

This would mean that we do not have to learn what words mean but then our vocabulary

size would be immense. Instead of having to spend a lot of effort in "trying to learn what

words are", the neural network would instead have a huge amount of weights to train to

learn the meaning of all words independently, including very similar words like "strong",

"stonger", "strongest", "strongly" and so on. Also, any word with a typo would either have

to be included or then the system would not understand non-perfect text at all.

A standard solution is to find some sort of middle ground between these two extermes. So the

idea is to do something called sub-word tokenization based on the frequency or importance

of different words and their sub-parts. Coarsely the idea is to reserve a token to the common

and/or important words like "the", "and" and "bear", and then also take a suitable collection

of other syllables like "##ness" that can be used to construct other words like "bearness".

In the worst case scenario we also have a dedicated token for each character so that we can

express also rare words, typoed words and nonsensical character sequences.

The original transformer paper used so called Byte Pair Encoding (BPE), see Britz et al. 2017,

while BERT uses the WordPiece method, see Wu et al. 2016. Both have the same approach

5. For anyone familiar with Huffman coding; there is some sort of analogue here in what we are trying to

accomplish.
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to take important words to be tokens themselves and break less important words to subwords.

The difference is how importance is decided and how the subwords are formed. We will skip

the details of these differences in this thesis.

The sizes of the tokenization vocabularies, i.e. the total amount of different words and sub-

words represented by tokens, vary depending on the model and tokenizer. For e.g. the BERT

model the vocabulary is around 30k different tokens, whereas the Finnish language Fin-

BERT6 has a vocabulary of around 50k tokens, owing probably largely to the complex mor-

phology of the Finnish language.7

3.2.3 Turning "bear" into a concept – input embedding vectors in more detail

The idea of the input embeddings is to provide a context free content or meaning for each

word in the tokenizer vocabulary. Even though these are sort of static when compared to

e.g. the attention mechanism, we note that for example in the BERT model we have about

110M parameters and about 22M of those8 are spent to learn and store the input embedding

vectors. So this context-unaware listing of the base meanings of tokens is important enough

to reserve a whole fifth of all the weights in the model.

What is their purpose then? In a pretend example we would like to have e.g. the input

embedding of the token "bear" to contain information on the following topics.

• The token can be a noun. (As in, "I saw a bear in the forest.")

• The token can be a verb. (As in, "We must bear this burden.")

• The token is spelled with the tokens "b", "e", "a" and "r". (This should help detect

typoed words.)

• The concept represented by the token can be related to forests and/or honey.

• The concept represented by the token can be related to something hairy and dangerous.

• ...

6. A BERT model trained with Finnish training data, see Virtanen et al. 2019.
7. Without going for a more detailed analysis, we can easily see that 22% of the BERT tokenizer tokens

start with "##", compared to 26% in the FinBERT tokenizer. See https://github.com/ramiluisto/NLP_toybox/

blob/main/notebooks/vocabulary_comparison.ipynb.
8. We’ll study this in more detail in Section 3.3.2.
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This is a manually made up list of things that pop to our mind when we think of the word

"bear", and the actual information content of the input vector will probably not translate

naturally to a discrete list of human concepts. Also some (or many?) of the properties of

bearness are probably encoded in the various transformer blocks as some aspects of bearness

depend on the context.9 But for many of the tokens a lot of the information still needs to be

encoded in the input vector – if a sentence is discussing a bear then the bear token is the only

one guaranteed token to be present10 and thus it really needs to contain at least a key to the

data that the model has about bearness. So this is quite non-trivial, and we can’t make very

strong claims about exactly what we should expect the input embedding vector to encode.

But can we say something at least?

To take a more simple example, let’s ask if the embedding vectors really contain "noun-ness"

in them? A standard approach to test something like this is called probing. In probing we

take the embedding vectors of some dataset, and to test if the embeddings carry information

about a topic X , we try to train various ML methods to extract X from the embedding data.

We did a quick probing test for the context-free embeddings by sampling random nouns,

verbs and adjectives from the WordNet data, extracting their input embeddings in the BERT

model and training an XGBoost, a single hidden layer FC NN and a no hidden layer FC NN

on the data. All of the methods achieved a 83-86% accuracy on the test set that had an even

split of all of the three classes. So this would imply that there is some statistically relevant

information about e.g. "noun-ness" learned in the context-free token embeddings.

For a further notion we looked at the output distribution of the two neural networks with

the embeddings of the tokens "bear" and "Bear" as inputs,11 see Table 1. Both of the no

hidden layer and one hidden layer models predict both words to be a verb, but note that the

capitalized version is considered much more likely to be a noun.

9. This claim is supported by the fact that advanced language models will also understand that "king of the

forest", or "a large hairy mammal that eats honey and hibernates" point to the concept of a bear. To us this

seems to imply that some parts of the concept of "bear" are stored outside the singular input embeddings.
10. In the BERT model we always have, as we shall see, also two special tokens called [CLS] and [SEP]. But

these do not have the bandwidth to carry information about all possible other tokens.
11. We are using here the "cased" version of BERT that differentiates between capitalized and non-capitalized

words.
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Word Model adjective pred. noun pred. verb pred.

bear No hidden layer 0.163 0.177 0.660

Bear No hidden layer 0.225 0.374 0.401

bear One hidden layer 0.0004 0.004 0.996

Bear One hidden layer 0.0060 0.283 0.711

Table 1: Table showing the predictions of two different model types trained on the context

free embeddings to predict whether the token is an adjective, a noun or a verb. The biggest

value of each row is boldened. Note that the word "bear" can be either a noun or a verb

depending on the context.

Trying to figure out exactly what all properties are encoded in a given input embedding

is a very complex task and way beyond this scope of this thesis. We will continue our

exploration later in Section 4.2.2, though we’ll be largely focusing on the behaviour of the

input embeddings as a point cloud.

3.2.4 Not a bag of words – positional embeddings in detail

One important property of the transformer models is that since the sequentiality of the inputs

is removed, the attention layers do not ’know’ what is the order of the inputs they have.12

This is suboptimal as in natural language the order of words can carry crucial information,

especially since we are using subword tokenization and longer words can be broken up to a

collection of consequtive tokens. The classical solution to this is to include position encod-

ings to the input vectors, and a standard way both in the original transformer and in BERT is

to add the n:th positional vector to the n:th token embedding in the input sequence.

Positional encoding vectors can be designed by hand, and Vaswani et al. 2017 uses a classical

technique based on trigonometric functions. In the original transformer we have the dimen-

sion of the embedding vectors dmodel = 512 and the n:th token we set the k:th coordinate to

12. We’ll explore this in more detail in the next section when we focus on the attention mechanism.
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be

enc(n,k) =

sin
(

n
100002k/512

)
, k is even

cos
(

n
100002k/512

)
, k is odd.

This generates a set of vectors that a neural network can learn both to differentiate from

one another and to understand the absolute position of a given token. See Figure 6 for an

illustration how these position encodings and their pairwise cosine similarities look like for

the first 128 positions. We’ll return to the position encodings and their design structure with

the BERT architecture in Sections 3.3 and 4.2.3. For a more general treatise on the design

of position embeddings in the context of the BERT architecture we refer the reader to Wang

et al. 2020.

Figure 6: Classical manually defined sinusoidial positional encodings and their pairwise

cosine similarities. On the left side each row represents a different positional encoding vector

of dimension 512.

3.2.5 Where to look – the attention mechanism in more detail

Let’s turn back to our example sentence "Then the bear waited for the door to open with a

serendipitous smile." that has been turned into a sequence of 18 position-aware embedding

vectors E0, . . . ,E17, each of length dmodel. Imagine that we are at the first transformer block

and we’re looking at a single attention head. There are various ways to implement an atten-

tion mechanism, but both the original transformer and BERT use the so called "Query, Key

and Value" (QKV) attention mechanism. To study this, suppose we are looking at generating

the attention-based update vector ∆Ei for an embedding Ei.
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What we do first is to generate a query vector Qi for the embedding Ei and key vectors K j,

j = 0, . . . ,17 for all the embedding vectors. These vectors have the same dimension which

we denote dQ and for both the original transformer paper and BERT dQ = 64. These are

formed by attention-head specific matrices MQ and MK of dimension dmodel × dQ together

with additive bias vectors BQ and BK . These Query and Key matrices with their biases are

learned weights for the model.

So we form the query and key vectors as Qi = MQ × Ei + BQ and K j = MK × E j + BK ,

j = 1, . . . ,17. These query and key vectors live in a different conceptual domain as the

embedding vectors, and the mental model here is that they encode a sort of query that a

given token might "ask" in a sentence. To make this more concrete, we’ll pretend that the

attention head we are looking at is focused on the task of "figure out if the nouns of the text

have definite or indefinite articles connected to them".13

In our example sentence "Then the bear waited for the door to open with an serendipitous

smile." the third word/token "bear" is embedded as E2, and the query Q2 we form represents

the question "Do I have an article related to me?". But how does the token say "I" or "me"?

Well, it has the positional encoding included, so the query could be something like "Does the

token at index 2 have an article related to it?". Then the key vectors we get for the first two

tokens, "Then" and "the" might look something like K0 = "I’m not an article, ignore me."

and K1 = "I’m an article at index 1." (The latter tokens would state similar things.) So how

could we form such a query from E2 and key from E1? Recall from Section 3.2.2 that the

context-free embedding vectors seem to contain some aspect of "noun-ness" in them, and we

were even able to detect those with a neural net of no hidden layers. Thus this attention head

with a focus on finding articles related to nouns would probably be able to learn parameters

that highlight both nouns and articles in the query and key vectors.

Now the next step is that we start to compare all of the key vectors K j with the query vector Qi

to see which of them are most applicable to the situation. The K0 key vector should be quite

dissimilar to Q2, whereas K1 should be much more apt for Q2. For K j, j > 2 the similarity

should be negligible due to their position. The actual way we compare the similarities is by

the dot product of the query and key vectors. Note that this is computationally beneficial,

13. I.e. we are asking if any given instance of a noun has "the", "a" or "an" attached to it.

30



since we want to parallelize as much as possible, and so we can calculate all the vectors Qi,

pack them into a matrix Q, do the same for the keys to get K, then we can simply calculate

all the pair-wise dot products by calculating the matrix product Q×K⊤. See again Figure 7.

Here we note again that this space of query and key vectors is conceptually distinct from

the embedding space(s), but there are no distinct "key space" and "query space". Thus the

example query we have here would probably look more like Q2 = "Article near and to the

left of index 2." and our key vector might then look like K1 = "Article at position 1." Though

of course the actual real-life attention keys and queries are not something we can turn into

natural English expressions.

Anyway. With the similarities between the keys and the queries, we now know which other

embeddings are most relevant for the task at hand. We then need to create the vector used

to update E2. Before going into the details, we note that there is yet another conceptual

difference in play here. And that is the difference between absolute amounts and differ-

ences/directions. It’s not as obvious a difference as the error you make if you try to add

litres to meters or apples to oranges, but let’s image that we are orienteering and talking to

a friend over the radio. They say that their coordinates, relative to a far away fixed point,

are "15km to north and 20km to east". You tell that your coordinates are "16km to north

and 18km to east". It would make sense to look at e.g. the difference of your coordinates:

(15,20)− (16,18) = (−1,2) and tell your friend to move this difference i.e. add the dif-

ference to their position. But it would not be very meaningful to study what is the sum of

your coordinates, (15,20)+ (16,18) = (31,38). So in a sense even though the math looks

similar, some of the pairs of numbers here are absolute positions while other are differences

or directions. We can get directions from substracting positions, we can add directions to

absolute positions to get absolute positions and we can add directions together to get more

directions, but we should not add absolute positions. And this is now relevant for our situ-

ation with the embedding vectors. Even if we find out from our query-key comparison that

the embedding E1 is relevant to the update of vector E2 based on the query, we should not

simply add a (weighted) E1 to E2 as these are, in some sense, positions and not differences.

For this reason we turn to the third component of the QKV-attention: the value vector.

The value vector Vi for an embedding Ei has the same dimension dmodel. But the idea here
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is that the value vector is a difference or a direction and not an absolute position, so that we

can add it to an embedding vector E j. The value vectors are calculated with learned matrices

and biases like the key and query vectors, but they use two matrices instead of one. The

reason here is that the query and key matrices have dimension dmodel ×dQ, whereas a naive

implementation of the value vector through a single matrix product would require a matrix

of size dmodel×dmodel. Since usually dQ << dmodel, this would require a lot more parameters

to learn. Instead we implement the value vector by using two matrices of shapes dmodel ×dQ

and dQ×dmodel. This drops the amount of parameters needed drastically, and has some other

clever computational advances as well – see Section 3.2.6. In any case, we generate a value

vector Vi for each of the embedding vectors and form a weighted sum of these to form the

attention update vector ∆E2.

We get the weights by taking the softmax of the dot products of the key vectors K j with the

query vector Q2. We thus finally get ∆E2 = ∑ j α jVj, and repeat this for all the embeddings

Ei. For our example case the weights would most likely concentrate very heavily on the

value vector V2, which would probably have content in the vein of "increase noun-ness and

definiteness of this token". Once more see Figure 7.

The whole QVD attention is very succintly expressed in Vaswani et al. 2017 as

Attention(Q,K,V ) = softmax

(
Q×KT√

dQ

)
V,

where Q, K and V are the collections of query-, key- and value vectors concatenated into

matrices. Note that they divide the dot products with the square root of the query space

dimension before taking the softmax. They mention that for larger values of dQ there seems

to be an advantageous effect to the learning, which they hypothesize to be related to gradient

propagation problems for softmaxed large dot product values.

And so we get to the end of a single attention head. To reiterate the attention process;

we update each embedding vector with a weighted sum of the value vectors of the other

embedding vectors. The weights are based on the dot product similarity of the query-key

vectors of the embeddings, and the query-, key- and value vectors are formed by matrix

products (including an additive bias vector) of an attention-head specific matrices and the

embedding vector in question.
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Figure 7: The self attention mechanism illustrated.
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With the multi-attention head we simply do the attention head process in parallel with several

attention heads. The k:th attention head produces, in the end, an update vector ∆Ek
j for each

embedding vector E j. These update vectors can be formed independently from one another

and at the end step we just add them all to E j. We wish to emphasize that it is only in the

attention heads where the embeddings of different tokens can affect each other.

We remark that with our hypothetical "looking for articles related to nouns" attention wouldn’t

work fully by itself to figure out which nouns have definite or non-definite articles in them.

This is due to the fact that even in our simple example sentence "Then the bear waited for

the door to open with a serendipitous smile." there are situations like "a serendipitous smile"

where the article and the noun are separated with a whole word. (And actually by quite many

tokens.) Furthermore the sentence we study has several articles, and it is nontrivial to match

them to their nouns. So in practice this kind of article detection would probably require the

combined effort of several attention heads together with the fully connected neural network

of a transformer block.

Now the final question in this subsection is about how fantastical was our example atten-

tion head that is "looking for articles related to nouns". The study of attention heads is

a field of its own, see e.g. (Goldberg 2019), (N. F. Liu et al. 2019), (Rogers, Kovaleva,

and Rumshisky 2020), (Tenney et al. 2019), (van Schijndel, Mueller, and Linzen 2019),

(Warstadt et al. 2019), (Wu et al. 2020), but suffice it to say that various linguistical concepts

have been identified in the attention layers, especially for the BERT model. The division

of tasks does not seem to be so cleanly divided between different attention heads (or even

different transformer blocks at times), but there do seem to be attention heads whose tasks

can be mapped to (or at least seem to be correlated with) the linguistical concepts used by

humans. In particular, (Htut et al. 2019) and (Clark et al. 2019) report that there are BERT

attention heads that clearly attend to certain identifiable syntactic positions. See also Figure

8 from (Kovaleva et al. 2019), where Kovaleva et al. describe different "types" of attention

heads.

We refer to (Rogers, Kovaleva, and Rumshisky 2020) and the references therein for a more

thorough exposition on the topic of BERT attention interpretation.
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Figure 8: Various types of attention patterns as described by (Kovaleva et al. 2019). Image

copied from the source files of the article.

3.2.6 Getting clever with linear algebra – multi-head attention in even more detail

We don’t want dissect the complete technical implementation of the multi-head attention

here, but we want to say a few words for those who will go on and read the original Vaswani

et al. 2017 for more details. In there the organization of the value matrices in particular is

a bit more complex than what we let on in here. Part of the reason is that there is a lot of

linear algebra optimization going on to make this all run fast. As we noted, the attention

mechanism was reduced to various matrix products and softmaxes, and these can be cast

and performed in very efficient way with e.g. Matlab, Numpy or other even more powerful

CUDA libraries. But there is even more things going on, so the implementation details are

less straightforward.

A single example we point out here is that we are taking a weighted sum of the value vectors.

These value vectors were created by the multiplying embedding vectors with two matrices,

one that has dimension dmodel ×dQ and thus "drops" the dimension of the embedding vector

from dmodel to dQ and another that "lifts" it back up. Weighted sum is a linear operation,

meaning that we can actually do the weighted sum in the smaller-dimensional space dQ

and then map the results back to the embedding space with the "lifting" matrix. This is

computationally quite beneficial.

Note also that many of the dimensions "line up" nicely here – for example in the BERT

model we have 12 attention heads that each have dQ = 64, and 12 ·64 = 768 = dmodel. These

kinds of consistent sizes of vectors and matrices can be very useful in getting a full utilization

of the immensely parallelizable CUDA framework.
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3.2.7 The decoder side of things – masked attention and cross attention

As we promised, we now take a quick peek at the decoder part of Figure 4. In particular, we

take a look on how the masked self-attention differs from the vanilla attention mechanism and

how the so called cross-attention works. We won’t go into detail about GPT architectures,

but suffice it to say that the main difference to the BERT architecture is the usage of masked

multi-head attention instead of the basic one.

We start by remarking on the context here. The original transformer was built for machine

translation, and it was a job for the encoder to "read" the incoming piece of text and a job for

the decoder to produce the translation. The reading of the incoming piece of text can be done

very well in parallel by the encoder, but the generation of the translated text is done from left

to right one word at a time. Instead of turning back to RNNs for this task, the idea is that

we use the same attention mechanisms as before, but simply mask all the tokens to the right

of the current embedding vector so that they cannot influence the deductions. One way is to

set the dot product values to −∞ which the softmax will set to 0, and thus the value vectors

related to those embedding vectors will be zeroed out. Note that even though this makes

the system more sequential than parallel, at training time we can do a lot of parallelization

by taking a training sentence and turning it into several training data by masking more and

more of the words at once. For example, from the English to Finnish sentence pair ("Bears

are hairy.", "Karhut ovat karvaisia.") we can create the training data points of ("Bears are

hairy.", "[?]"), ("Bears are hairy.", "Karhut [?]"), ("Bears are hairy.", "Karhut ovat [?]") and

("Bears are hairy.", "Karhut ovat karvaisia[?]") where in each pair the "[?]" symbol represents

the token that the system should predict.

The cross-attention here is contra to the attention mechanism that we studied within the

encoder which is called self -attention. Here the idea is that when working through the QKV

attention, we do not need to form the query-, key- and value vectors from the same set of

embeddings! In the original transformer paper, as we are working on translation, we have on

one hand a complete sentence in some language and on the other hand a partial translation

of that sentence in another language. But instead of texts in two languages, we could have

two texts in the same language whose interrelations we are trying to parse, or a piece of

vectorized audio and a text, or images and video, and so on. Essentially kind of data that is
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turned into embedding vectors goes here.

So for now suppose we have embedding vectors E1, . . . ,EK from domain 1 and embedding

vectors Ê1, . . . ÊN from domain 2, and that the aim of the attention mechanism is to update

the domain 1 vectors based on the domain 2 vectors. Note that the vectors do not need to

have the same dimension. What happens in the cross-attention is that the Query meachanism

maps E j 7→ Q j ∈ RdQ and the Key mechanism maps Êi 7→ Ki ∈ RdK with dK = dQ. Thus

mapping these vectors from two different domains to something that we can compare with

the softmaxed dot product! Then the role of the Value mechanism is to map Êi 7→ ∆Êi in

such a way that Êi is an absolute position in domain 2 while ∆Êi is a direction in domain 1.14

Thus the query-key mechanism enables the comparison of embeddings of different domains,

and the value vector enables the domain 2 to affect vectors in domain 1.

3.2.8 Putting it all together – a second view to the high-level architecture

After all the details in mind, we can look at the big picture again with a better understanding.

We wish to highlight here a few things.

The first of these is that the attention mechanism is agnostic to the order and amount of

inputs. If we have input encodings E0, E1 and E2, then feeding in to the self-attention mech-

anism the sequence (E0,E1,E2) will produce the output (E ′
0,E

′
1,E

′
2), while an input sequence

(E2,E0,E1) would produce the output (E ′
2,E

′
0,E

′
1). This is due to the fact that the attention

mechanism updates each embedding based on a weighted sum of the value vectors, and these

weights were calculated from a softmaxed dot product – if you read through the details again,

nothing changes here if you permutate the orderings. Furthermore the feed-forward neural

network is the same neural net applied to each output embedding simultaneously but individ-

ually, so there is no order present here either. So the system really is a "bag of words" system

without the positional encoding vectors added to the input embeddings in the very beginning.

Each transformer block is completely order agnostic and thus the positional embeddings are

crucial.

14. Depending on the various dimensions involved, this would probably be again split to two matrix opera-

tions like in the self-attention mechanism.
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The second thing we wish to highlight is that when training or using this system, besides

the amount of positional encoding vectors there is no inherent limitation on the amount of

tokens that can be fed to the network. With varying amount of tokens the attention layer will

have a varying amount of dot products to weigh on. For the original transformer paper the

encoding vectors were manually created trigonometric functions, so in principle we could use

any number of them. The problem that emerges is that the amount of attention dot products

grows O(N2) and together with it the backpropagation calculations15. Also, for the system to

learn what the various positional encoding vectors signify, it needs to have a good collection

of them presented during training.16 Meaning that if we wish to do inference on embedding

sequences of length 10M, then we better have trained the system with many sequences of

comparable length. Note that e.g. in BERT the positional embeddings are learned at training

time, so the so called "window width" of the system, e.g. the maximum length of the input

embedding sequence, is fixed at 512.

A final thing we wish to mention here is that this fluidity in position-freeness also gives us

the chance to train the system with different length of sequences. As we will see, BERT

model was trained 90% of the time with text of length 128 tokens and 10% of the time with

length 512 tokens. The only place where these training styles have any effect will be at the

position embedding vectors, as we will also see.

3.3 The BERT model architecture

Now we move on to the architecture of the BERT transformer (Bidirectional Encoder Rep-

resentations from Transformers) introduced in Devlin et al. 2019. Their paper lists several

main goals for their work, for us the most crucial ones are as follows:

1. Create an NLP model whose base architecture does not need to be altered for down-

stream tasks. The BERT model has been pre-trained with quite a large effort, but it

15. Though there are other attention mechanisms besides the KVD attention. Some of these are particularly

targeted to avoid this quadraticity.
16. In theory this is not completely true. We could, in theory, build a positional encoding system where e.g.

the concept of "vector B is the next one from vector A" is extracted with one specific linear operator that the

network can learn. But in practice this might be a challenging task and its performance unclear.
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can be fine-tuned to various specific tasks in the matter of a few hours.

2. The authors wish to show the benefits of bidirectionality, i.e. not limiting the model

with e.g. only seeing tokens to the left of the current position. So in particular, we’ll

be using the encoder part of the original transformer architecture, not the decoder part.

3.3.1 Overview of the architecture

The bird’s eye view of the BERT core architecture is as in Figure 9, see again Figure 5

for details of the encoder block. The main architecture of BERT is almost identical to the

original Transformer encoder part, but there are a few differences. We’ll be describing the

BERT architecture by explaining the differences to the original transformer encoder.

1. As we briefly mentioned, the tokenizer used is different than in the original Trans-

former. In BERT we use the WordPiece method instead of BPE, but we won’t go into

detail about the differences in this thesis and refer an interested reader to Prince 2023.

A crucial difference here is that BERT will add to any tokenization special tokens; the

[CLS] token at the start and a [SEP] token at the end. The purpose of the [CLS] token

is to function as a "summary" of the whole text while the [SEP] operates as a segment

end marker. We’ll discuss these in more detail in Section 3.3.3

2. The positional encodings are learned vectors instead of hardcoded sinusoidal ones.

There are 512 positional encodings, and we will look at them in more detail in Section

4.2.3.

3. Besides the positional encodings, we also add to each input embedding one of two

possible segment embedding vectors. The purpose of these is related to the training of

BERT – we’ll go in to more detail in Section 3.3.3, but in short BERT has a ’mode

of operation’ where it predicts if two sentences are next to each other in a piece of

text or not. The segment embeddings identify to the model the different sentences to

compare.

4. The BERT model uses the same architecture of transformer blocks as the original

transformer paper. We have 12 transformer blocks, each containing a 12-layered multi-

attention head. The dmodel dimension for the standard BERT is 768, the key and query

vectors are 64-dimensional and the value vector generation is also factored through
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R64.

5. After the final transformer block there is the "head". This is usually a simple fully

connected neural network layer that is changed and trained specifically for a given

downstream task. It is usually connected either to the final embedding corresponding

to the [CLS] token or to all of the embeddings in the final layer.
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Figure 9: The BERT main architecture.

So with that we see that the BERT model really is mostly just the encoder part of the original

transformer architecture. We’ll next turn to explore the BERT architecture a bit with bespoke

model analysis tools.

3.3.2 On the weights of BERT

One way to get a technical overview of the architecture of BERT is with the torchinfo

library. Running the following code17 with various depth and verbose parameters will

give information on varying resolutions.

1 from transformers import BertModel

2 from torchinfo import summary

3

4 model = BertModel.from_pretrained(’bert-base-cased’)

5 print(summary(model, depth=3, verbose=1))

With the parameters depth=3, verbose=1 the printout looks something like below,

though we’ve added comments to the end of the lines:

17. Note that this will download the BERT base model locally, taking up about 416Mb of space.
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================================================================

Layer (type:depth-idx) Param #

================================================================

BertModel --

+-BertEmbeddings: 1-1 --

| +-Embedding: 2-1 22,268,928 # Input embs

| +-Embedding: 2-2 393,216 # Position embs

| +-Embedding: 2-3 1,536 # Segment embs

| +-LayerNorm: 2-4 1,536

| +-Dropout: 2-5 --

+-BertEncoder: 1-2 -- # Encoder

| +-ModuleList: 2-6 --

| | +-BertLayer: 3-1 7,087,872 # 1:st Transf. block

| | ...

| | +-BertLayer: 3-12 7,087,872 # 12:th Transf. block

+-BertPooler: 1-3 -- # Head

| +-Linear: 2-7 590,592

| +-Tanh: 2-8 --

================================================================

Total params: 108,310,272

Trainable params: 108,310,272

Non-trainable params: 0

================================================================

With a vocabulary of 30k tokens, each with a 768-dimensional input emebedding, we see the

30k · 768 ≈ 22M input embedding parameters at Embedding 2-1, the 512 · 768 ≈ 400k

positional embedding weights, and the 2 · 768 = 1536 weights of the segment embeddings.

The various normalization layers also use a set of 768 weight and 768 bias weights. In

each of the BertLayer3-Xs we see 7M weights, and we can open up their distribution by

increasing the depth and verbosity parameters. By setting depth=4, verbose=1

we get the model counts at the following resolution.

...

| +-BertLayer: 3-1 --

| | | +-BertAttention: 4-1 2,363,904

| | | +-BertIntermediate: 4-2 2,362,368

| | | +-BertOutput: 4-3 2,361,600

...

Here the BertIntermediate and BertOutput are the two layers of the feed-forward

neural network with a hidden layer of 3072 neurons. (So we have 2,361,600 = 3,072 ·768

weights for the output layer, and with the 768 bias vectors of the hidden layer, 2,362,368 =

3,072 ·768+768 weights for the intermediate layer.)

Increasing the verbosity to 2 gives even more detail about the attention layer.

...

+-BertEncoder: 1-2 --

| +-layer.0.attention.self.query.weight +-589,824

| +-layer.0.attention.self.query.bias +-768

| +-layer.0.attention.self.key.weight +-589,824
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| +-layer.0.attention.self.key.bias +-768

| +-layer.0.attention.self.value.weight +-589,824

| +-layer.0.attention.self.value.bias +-768

| +-layer.0.attention.output.dense.weight +-589,824

| +-layer.0.attention.output.dense.bias +-768

| +-layer.0.attention.output.LayerNorm.weight +-768

| +-layer.0.attention.output.LayerNorm.bias +-768

...

We have a 12-head multi-attention system with dQ = 64. Thus for each of the attention heads

we have a Query matrix of size 64 ·768 = 49,152, and 49,152 ·12 = 589,824. There’s also

a learned query bias vector that we add to the result. Same holds for the key vectors. For

the value vectors, recall that we split the mapping of embedding vectors to value vectors into

two matrices of dimensions 768×64 and 64×768. We see this split here as having separate

attention.self.value and attention.ouput.dense layers.

3.3.3 On the training of BERT

Besides the architecture breakthrough of transformers, the field of NLP somewhat simultane-

ously got a large boost from improved methods of pretraining language models. In particular,

the ULMFiT (Howard and Ruder 2018) approach to language model training was important.

The idea of the ULMFiT approach is somewhat similar to the idea of transfer learning. In

ULMFiT we train a language model in three phases:

1. Pre-training. This is the heavy training phase where we use e.g. all of the Common-

Crawl or Wikipedia data to train the model to understand a general idea of language.

2. Domain fine-tuning. Here we take the base model and extend the training with a corpus

from the domain of application.

3. Task fine-tuning. Finally here we train the model to the specific task we need to under-

stand. With the BERT architecture, recall Figure 9, this usually involves the change of

the final head layer to something task-specific.

When we talk about the training of BERT, we refer to the most compuationally expensive

pre-training part, though the task fine-tuning is identical in technical nature.

One of the great issues in ML is the fact that we usually need a lot of training data, and it

is often very laborous to annotate the ground truth to training data. A crucial part of the
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success of transformer models is the applicability of so called Masked Language Modeling

(MLM)18, in which training data is generated by having a language model predict a masked

word from existing text. This MLM approach means that any large corpus of text can be

turned into a considerable amount of training data.

Besides the MLM task, the BERT training contains also something called next sentence

prediction. In this task we again take long pieces of text from a corpus and split them in two.

We then combine these halfs with either the original pair or some other pair and ask the ML

model to predict if the two given text pieces were originally next to each other.

The BERT training does both of these tasks, the MLM task and the next sentence prediction

task, "in one go". The idea is that we take sentence pair ("The bear was majestic.", "We took

a lot of pictures of it."), tokenize the texts and extend the tokenization with special tokens as

follows:

[CLS] The bear was majestic. [SEP] We took a lot of pictures of it.[SEP]

Furthermore besides adding the special [CLS] and [SEP] tokens, we also add to the token

embeddings the sentence type embeddings shown in the diagram in Figure 5. There are two

sentence type embeddings, and the first one is applied to all the tokens up to and including

the first [SEP] token, while the latter is applied to the rest of the tokens. Thus we ’inform’

the model in two ways where the separation of the sentences is – both with the [SEP] token

separating them and the segment vectors labeling the parts.

The next sentence prediction is read from a simple binary classification head attached to the

final embedding of the [CLS] token. In particular, after the BERT pre-training the [CLS]

token is fine-tuned for this task and this task only. The name "CLS" stands for classification,

but the authors recommend fine tuning whenever the [CLS] embedding is used for a classi-

fication task since at the base version it is not specialized for differentiation. Regardless, the

next-sentence prediction task does ’force’ the [CLS] token to be imbued with general level

information of the whole text.

With the next sentence prediction task set up, we then alter the tokenized input text

18. Also known as the Cloze task in the literature.
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[CLS] The bear was majestic. [SEP] We took a lot of pictures of it.[SEP]

with the MLM task. This is done by selecting 15% of the tokens for masking. For these

tokens we replace the token in question with a special [MASK] token 80% of the time,

replace it with a random token 10% of the time and leave it to be 10% of the time. Regardless

of which of these three actions we perform, the model is then tasked, for this training datum,

to predict the original word. The reasons for not only using the [MASK] tokens are discussed

in detail both in (Vaswani et al. 2017) and (Rogers, Kovaleva, and Rumshisky 2020), so we

won’t go into them here. So our final training datum might look like this:

[CLS] The [MASK] was majesticduck [SEP] We took [MASK] lot of pictures

of it.[SEP]

and the model would need to predict the emboldened tokens and that the sentences are in

fact from a text where they are next to each other.
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4 A study of the structure of BERT embedding vectors

As we saw in Chapter 3, the BERT architecture we study can be seen as a system that

produces a sequence of embeddings that encode more and more complex information the

further we advance.1 We start with a sequence of context-free embeddings of individual

tokens and end up with embeddings whose purpose is to encode complex semantic content

of the whole input text. In this Chapter our aim is to study in detail how the embedding

vectors look like at various levels of the encoder with a special focus on the final output

layer. We’re also guided in this Chapter by the research questions 1 through 3 stated in

the introduction; these ask in a few different ways if we can observe differerences in these

various embeddings.

After a quick look into the tokenization part of the system, we’ll continue by looking at the

context-free embeddings that are the input to the actual encoder stack. When then look at

how these embeddings evolve through the 12 transformer blocks of the system before turning

to study the final output embeddings. After that we turn to study the semantic content of the

embedding vectors and if the various embedding spaces have conceptual relations. We also

look how and if any semantic properties persist in the "evolution" of an embedding through

the transformer blocks. We finish the Chapter with a detailed look at some application pos-

sibilities of the embeddings.

Throughout the chapter we’ll be using the cosine similarity of two vectors as a measure of

their similarity. The cosine similarity is simply the cosine of the angle between the two

vectors; cosine similarity of 1 means that they have the same direction, cosine similarity of

0 means that they are orthogonal and cosine similarity of -1 means that they are pointing at

opposite directions. It is in no way obvious that this metric would be the best one to measure

embedding vector similarities, but it is one of the most widely used ones. We refer to Rogers,

Kovaleva, and Rumshisky 2020 for further discussion on the suitability of various metrics.

1. This evolution of the embeddings through the transformer blocks is sometimes called the residual stream

of a transformer in the literature.
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4.1 A few words on the research methodology

Our methodology, if it should even be called that, has no name. Not because it is new, unique

or original, but because it is so old and fundamental that it requires no special name. It is

simply that of starting with curiosity, planning an experiment, trying to guess the results

before running it, and then updating our worldview based on the discrepancy between our a

priori guess and how the world turned out to be. After this we repeat. We don’t aim for a

particular goal, but look at the world through experiments and see where they lead us. In the

end we report the most fascinating path of results.

We feel that it would be intellectually dishonest to name and claim here a particular re-

search methodology like "exploratory data analysis". Our approch has been nothing if not

exploratory, but we feel that fixating on a single title would be a disservice to the reader.

Many of the research methodologies have a somewhat fixed format and definition. Though

being restricting, such standardization has several benefits and e.g. supports the replicability

and extendability of scientific research. This work does not, however, aim to be reproducible.

It aims to be a master’s thesis. It fulfills its purpose primarily in the process of it being written

as this is when our main goal of learning the topic is being fulfilled – the text you are reading

is just our witness report after the fact. We are furthermore devote believers of Feynman’s

idea that a great way to learn is to try to do everything by yourself before checking how it’s

supposed to be done. It is these ideas that drive our choice of a research methodology. If

pressed, we would name this simply as the base scientific method.

So in this thesis we have set out to better understand the internal model transformers. Our

avenue of attack was to focus on BERTs embedding spaces, which first lead us to study the

transformer architecture in depth. After that the task turned into starting to analyze how the

embedding vectors look like with various concrete inputs. We fed the system both synthetic

and real-world data and tried to find interesting points to look and probe at. Many approaches

and ideas turned out to be either not interesting, or somewhat interesting but requiring too

much exposition to explain to be worth included in this particular thesis with its limited

scope. But some approaches bore fruit and these are reported here in the next sections. We

will return to the topic of research methodology in a sort of post mortem analysis in Section

5.1.
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4.2 Embeddings before the encoder

In this section we start with a more detailed analysis of both the tokenization and the triplet

of input embeddings, positional embeddings and sentence type embeddings. We then look

at how the three types of pre-encoder embedding vectors relate to each other. Note that the

crucial point in this Section is that these vectors are all context-free, meaning that they do not

depend on surrounding data. This means that, unlike with the latter encodings, we can study

the embeddings in each set of embedding types independently from any other embedding.

Recall that with the BERT architecture all of these embedding vectors are learned parameters.

The vocabulary size of BERT is 30k, and each of those 30k tokens has their own input

embedding vector of dimension 768. This means that the matrix of all 30k input embeddings

has around 23M values2. Then there are 512 positional embedding vectors of length 768,

netting us around 39k parameter values. Finally we have two sentence type embedding

vectors, both with length 768.

Now, getting e.g. the cosine similarities between any two input embedding vectors results

in a matrix of 900M values – as a numpy matrix this takes around 3.5 Gb of memory on

our laptop. This means that most calculations can still be brute-forced, but they can be quite

compute-intensive.

To start off our analysis, we have in Figure 10 plotted the basic statistical distributions of

the input embeddings and the positional encodings embeddings. We’ve not included the two

sentence type embedding vectors, but their norms are 0.70 and 0.72, their cosine similarity

is −0.065, their dot product is −0.033 and their Euclidean distance is 1.04.

What we note in Figure 10 is that the input embeddings and positional embeddings seem

to have quite different structures and distributions. The positional embeddings have norms

concentrated to just below 0.5, with the input embeddings have a wider distribution of norms

between 1.0 and 1.75. For the sentence type embeddings we had norms around 0.7, so they

are also separated from the other types. We see similar properties in other statistics as well.

The differences between these two embedding styles are also visible in our projection tools

2. See again Section 3.3.2.
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(a) Euclidean norm distribution (b) Euclidean distance distribution

(c) Dot product distribution (d) Cosine similarity distribution

Figure 10: Distribution visualizations of the context-free embeddings and the positional em-

bedding vectors of the BERT model.
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and PCA dimension analysis, as shown in Figure 11. In here we see several things:

(a) The PCA projection is the most geometry preserving of our projections, and here we

see both a distinct distribution between the two embedding types, and a non-trivial

shape of the input embedding vectors. There seems to be a "Pacman"-shaped main

component in the input embeddings together with a towering offshoot at the top. The

positional embeddings are much more narrowly distributed as we saw from the charts

in Figure 10, so the input embeddings dominate the PCA projection.3

(b) From the dimensionality analysis we see that the curve of the positional embeddings

increases very fast compared to the input embeddings, implying that they are much

more focused on a lower-dimensional subset of the embedding space. This is to be

expected as the concept they encode - position - has a lot less information than the

input embeddings that encode semantic meaning of (almost) all words. We’ll do more

specific analysis of the positional encodings later on in Section 4.2.3.

(c) & (d) Both of the t-SNE and UMAP projections that aim at presenting the topology but not

the geometry of the data are able to spot that the positional embeddings have two

components, one of which is possibly mixed in with the input embeddings. Both of

the methods also seem to hint at a long string-like part in both embedding sets. We’ll

return to these notions in sections 4.2.2 and 4.2.3.

So there are observable geometrical differences between the different types of embeddings.

Our first research question asked if we can detect the difference between these types of

vectors, which we have now shown to be possible.

We’ll next study the various embedding vectors in more detail.

4.2.1 The tokenization

The tokenizer and its results are not embeddings, but we feel that they fit naturally in this

subsection as it is the tokenizer that ’decides’ which words or parts of words ’deserve’ their

own input embedding.

3. Recall that the PCA projection to 2D looks for the two dominant directions of variance and is not aware

of any labeling we might have for the data.
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(a) PCA projection (b) PCA dimension analysis

(c) UMAP projection (d) t-SNE projection

Figure 11: Projection visualizations and dimensional analysis of the context-free embeddings

and the positional embedding vectors of the BERT model.

50



We can quite easily study the tokenizer contents.

1 from transformers import AutoTokenizer

2

3 tokenizer = AutoTokenizer.from_pretrained(’bert-base-cased’)

4 for j in range(30000):

5 print(j, tokenizer.convert_ids_to_tokens([j]))

This will print 30k lines of text so we recommend directing the output to e.g. a file. What we

see in the tokens is as follows:

0: The special [PAD] token.

1–99: The special [unusedX] tokens.

100: The special token [UNK] for unknown token.

101: The special classification [CLS] token.

102: The special [SEP] token.

103: The special [MASK] token.

104 & 105: Two more special [unused] tokens.

106–199: Pretty much the ascii character set.

200–1102: Various more exotic single character tokens.

1103: ’the’

1104: ’of’

1105: ’and’

1106–28995: The rest of the tokens in no immediately obvious order, though common short words

seem to appear higher on the list.

As noted in Section 3.2.2, about 22% of the tokens start with "##", i.e. are the endings of

subwords. Furthermore about 77% of the tokens are alphanumeric4.

4.2.2 The input embedding vectors

As we saw in Figures 10 and 11, the input embeddings are not uniformly distributed to the

unit sphere or cube in R768. Instead they do seem to have some complex geometry. Let’s

4. See https://github.com/ramiluisto/NLP_toybox/blob/main/notebooks/vocabulary_comparison.ipynb for

further comparisons.
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first look at some extremal values and look for the extremal pairs in the cosine similarities

between input embedding pairs. Due to some page count comments from our advisors, we’ve

decided to omit the full list of 900M pairs of tokens and their pairwise cosine similarities,

and simply show some of the token pairs with the more extremal cosine similarities. See

Table 2.

Token 1 Token 2 Cosine similarity

£1 £2 0.9328

northward southward 0.9095

197 196 0.8891

1986 1985 0.8876

southbound northbound 0.8866
...

...
...

island Steele 7.4506E-09

J nets 5.5879E-09

knee Mali 3.7253E-09

bed ##nect 0.0000E+00

arms Via -1.8626E-09

Southern fears -7.4506E-09
...

...
...

and Quarterfinals -0.3134

and vols -0.3179

and smirked -0.3181

and Nope -0.3187

Table 2: Table showing the cosine similarities of various context-free embeddings with spe-

cial tokens excluded.

In the most negative cosine similarities the words "and" and "the" are very much dominating.

So the model has learned for these tokens in particular that in some cases they are strongly

anticorrelated with various other words.
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We can also try to see where the embeddings are centered at by taking the average of all

the input embeddings. This should not be considered to be an operation with any semantic

meaning in finding "the most average word". We find it and its relation to other embeddings

interesting regardless as a sort of description of the "mean and variance" of the distribution

of embeddings. In Table 3 we’ve listed some of the alphanumeric tokens that are closest to

the average input embedding with respect to various metrics.

Token
Euclidean

Distance

Abs.

Cosine

Similarity

Abs.

Dot

Product

Cosine

Similarity

Dot

Product

Euclidean

Norm

Archived 1.64 0.38 0.33 0.38 0.33 1.77

versa 1.54 0.39 0.33 0.39 0.33 1.67

facilitate 0.87 0.48 0.24 0.48 0.24 1.00

innovative 0.92 0.44 0.22 0.44 0.22 1.02

Keyboards 1.06 0.60 0.38 0.60 0.38 1.28

Freyja 1.18 0.59 0.41 0.59 0.41 1.40

ground 1.32 0.00 0.00 0.00 0.00 1.22

building 1.17 0.00 0.00 -0.00 -0.00 1.05

Wouldn 1.29 0.57 0.43 0.57 0.43 1.50

trillion 1.50 0.51 0.43 0.51 0.43 1.69

and 1.20 0.37 0.17 -0.37 -0.17 0.92

the 1.11 0.31 0.13 -0.31 -0.13 0.85

Table 3: Table showing some of the extremal token values compared to the average embed-

ding. In these extremal values we’ve included only the tokens that contain only latin alphabet

symbols and have length of at least 3. Largest and smallest value of each column has been

highlighted.

For context on the size and distribution of the column values in Table 3 we’ve plotted his-

tograms of their full distribution in Figure 12. In the histograms, excepting the norm, each

histogram plots the values of the particular metric between the average embedding and all the

other input embeddings. The norm distribution is simply the norms of the input embeddings,
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provided for context. The mean of each distribution is included in the legend.
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Figure 12: Histograms on the distributions of the measures studied in Table 3.

We can thus conclude that even from the point of view of statistical distributions of the pair-

wise similarities of the embedding vectors, and their relations to the average vector, the set

of context-free embedding vectors exhibit complex structure.

4.2.3 The positional encoding vectors

As we noted in Section 3.2.4, positional encodings can be designed ’by hand’, and e.g. the

original transformer uses encodings based on trigonometric functions.

For us and BERT, however, these positional encodings are learned properties, i.e. they are

initialized as random weights and then learned during the training process. We’ve plotted the

positional encodings and their cosine similarities in Figure 13 – compare this to Figure 6 in

Section 3.2.4.

There is a lot to unpack Figure 13. We first of all note that, as expected, there is no visu-

ally obvious structure to the positional encodings. This is natural as a selection of e.g. the

sinusoidial functions or a standard basis of 768 is a very human approach. There are an

uncountable amount of bases we can take for any given vector space, and the neural network

has no preference to choose a basis that is quick for us to grasp from images. Though we do
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Figure 13: BERTs positional encodings.

see some geometrical wavy patterns in the vectors, which is a sign of some sort of continuous

change of parameters over the position.

The second thing we note is that there seems to be a phase change in the structure of these

vectors at position 384 = 256+ 128 = 768/2. Some ad hoc entropy and distribution mea-

surements seem to suggest that these values are randomly distributed, but it is hard to say.

For now we point out that if we look at the distribution of the values and the pairwise cosine

similarities of these positional encodings corresponding to the latter positions, they do not

seem to exhibit any clear structure. As noted in Section 3.3.3, during the training of BERT

they used training text samples of 128 tokens 90% of the time and text samples of 512 to-

kens 10% of the time. We do feel that we can also see a small phase shift around the 128:th

positional encoding vector in the pairwise cosine similarities in Figure 13, but this does not

explain the change at positions 384 onwards. In Figure 14 we’ve replotted the charts in Fig-

ure 10 with only the first 384 positional encodings included. We note in particular the shape

of histogram of the pairwise cosine similarities; with all positional embedding vectors we

clearly have a combination of the flatter distribution we see with the first 384 embeddings

superimposed with a sharp narrow distribution around zero, which should be expected when

taking cosine similarities between random high-dimensional vectors.

Furthermore, comparing the situation to the FinBERT5 model, see Figure 15, we see that

there is no similar cutoff, though we again observe a slight phase shift at the 128:th positional

5. A transformer model with identical architecture and training schema to BERT, but trained with Finnish

text. See Virtanen et al. 2019.
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(a) Euclidean norm distribution (b) Euclidean distance distribution

(c) Dot product distribution (d) Cosine similarity distribution

Figure 14: Distribution visualizations of the context-free embeddings and the positional em-

bedding vectors of the BERT model with only the 384 positional encodings. Compare this

to Figure 10.
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encoding. This is likely again due to the 128-512 split in the training schema.

Figure 15: Positional encoding vectors and their cosine similarities in the FinBERT model.

The third thing we note is that the pairwise cosine similarities of the first 384 positional

encoding vectors exhibit very strong patterns. Not easily visible from the heatmap of Figure

13 is that the positional encodings corresponding to the first position has very low cosine

similarities with the rest of the positional encodings. This is quite natural as the first token

in BERT is always the special [CLS] token that aims to capture the semantic content of the

whole text. For the rest of the positional embeddings we have in Figure 16 plots of cosine

similarity of a single positional embedding against the 128 first positional embeddings – i.e.

this plots the first 128 values of the rows 1-10 of the heatmap in Figure 13. What we notice

is that each of the positional encodings has a very similar structure. They are quite dissimilar

to previous positional encoding, very similar to themselves of course, and then the similarity

is sort of "oscilating downwards".

We can get a better image here if we change the plotting by shifting these graphs backwards,

i.e. plotting the relative similarity of a given positional encoding to the encodings coming

after it. See Figure 17. Thus we see that there is some non-trivial structure in the cosine sim-

ilarities of these positional embeddings. We refer to Wang et al. 2020 for further discussion

on the details of BERT position encodings.

Next we turn to the geometry of the positional encodings. Figure 18 had the UMAP and t-

SNE projections of the embeddings with the positions 384-511 both included and excluded.

What we notice is both that there seems to be strong 1-dimensional structures in the first 384

embeddings and that the last 128 embeddings (which we call the "bad" embeddings in the
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Figure 16: The cosine similarities of the first 10 non-[CLS] token positional embeddings

against the next 128 positional encodings.

Figure 17: Cosine similarities of BERTs positional encodings, shifted to show relative prop-

erties.
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figure) look random also here, supporting our previous observation. The linear structure is

also to be somewhat expected – the positional encodings do encode the linear ordering of the

sequence of input tokens.

Figure 18: The UMAP and t-SNE projections of the BERT positional embeddings, with the

"bad" positional encodings from 384 onwards highlighted.

More striking is the observation that if we take the PCA-projection of the positional em-

beddings to 3D, a helix-like path emerges; see Figure 19. There are two things we wish to

emphasize here:

1. The PCA projection is an orthogonal projection, so it does not ’invent’ new geometry

unlike t-SNE or UMAP. So there really is some sort of helical structure in the full

structure of the embeddings. Furthermore the t-SNE and UMAP projections shown in

Figure 18 support the idea that the topological structure of the positional embeddings

is strongly 1-dimensional.
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2. This is a projection to 3 dimensions, meaning that we are ignoring 509 dimensions6 of

geometry and only looking looking at those three that generate most variance. Recall

from the PCA dimensional analysis in Figure 11 that the most dominant 3 dimensions

only capture around 30% of the variance visible in the data. So even though the em-

beddings seem to have 1-dimensional topology, and contain a helical factor, it does not

mean that this is all that there is to the geometry of the positional embeddings.

(a) Side view (b) Diagonal view (c) Top view

Figure 19: The helical structure of the first 384 positional embeddings of the BERT model,

excluding position 0. PCA projection to 3 components. We do one ’round’ once in about

every 22 tokens.

We note that the cyclical nature visible in Figure 19 shows that we go around once in about

every 22 tokens. This frequency of 22 is not mirrored in Figure 17, which also seems to

also suggest that the movement that the positional embeddings do in the rest of the 509

dimensions is non-trivial.

4.2.4 The (two) sentence type encoding vectors

As mentioned, we have only two of these and their norms are 0.70 and 0.72, their cosine

similarity is −0.065, their dot product is −0.033 and their Euclidean distance is 1.04.

As discussed in Section 3.3.3, part of the training task is to predict form the final [CLS] token

embedding whether two sentences follow each other. These two sentences are distinguished

6. The positional embeddings live in R768, but since we have only 512 of them, they are contained in an (at

most) 512-dimensional linear subspace of R768.

60



both by a separating special [SEP] token and by adding the respective sentence type encoding

vectors to the tokens of each sentence. For many down-stream tasks like text classification

from the [CLS] head or named entity recognition from other tokens, only the first sentence

type encoding vector is used and is thus pretty much a constant vector added in the beginning.

4.2.5 The interrelations of the context-free embedding types

The three types of embeddings – input embeddings, positional embeddings and sentence

type embeddings – represent conceptually very different things. In this section our aim is to

study if we are able to observe this dissimilarity beyond the statistical differences we saw in

Figure 10.

Looking at the cosine similarities between the positional embedding vectors and the context-

free embedding vectors, we note that with around 30k context free embeddings and 512

positional encoding vectors, there are around 14M pairwise cosine similarities that can be

calculated. From these 14M there are exactly four token-position pairs that have cosine sim-

ilarity outside of the range [−0.2,0.2] and we’ve listed three of these in Table 4. Essentially

we see that the special [CLS] token which always appears in the first position, i.e. the zeroeth

index, has an exceedingly high cosine similarity with the corresponding position embedding.

Indeed, these two vectors have norms of 1.44 and 1.48, their Euclidean distance is 0.42 and

their l∞-distance7 is 0.06. So these two vectors are almost identical – recall from Table 2 in

the previous sector that the two tokens with most similar context-free embeddings were "£1"

and "£2" with a cosine similarity of 0.93!

Now, for the differences of the two sentence type encodings against the position embeddings

and the context-free embeddings we’ve calculated the pairwise cosine similarities. Table 5

lists some of the main statistics.

What we note here is that even the extremal values are barely higher than the [−0.2,0.2]

range with the supermajority being pretty much orthogonal. Thus we can, for the second

time, safely conclude that we have answered our first research question in the positive.

7. I.e. the maximum difference found in any coordinate.

61



Token Position Cosine similarity

[CLS] 0 0.96

[SEP] 0 0.48

[MASK] 0 0.48

##U+0964 0 0.204

Table 4: Table showing the four token-position pairs whose cosine similarity is outside of

the range [−0.2,0.2]. The final token is a punctuation mark in sanscrit called "devanagari

danda" and it is nontrivial to display it LATEXformat.

Pair Max Min Avg 5% Percentile 95% Percentile

Sent. type vs Position 0.2349 -0.1514 0.0123 -0.0738 0.1412

Sent. type vs Context-free 0.2183 -0.1899 -0.0400 -0.1081 0.0238

Table 5: Some statistics on the cosine similarities between the sentence type encodings and

other pre-encoder embedding vectors.

4.3 Evolution of embeddings within the encoder

We now move on to study context-aware embeddings by advancing through the attention

layers. Studying all possible situations by brute force turns completely unfeasible at this

point – instead we turn to inferring properties of the whole by studying samples. In particular

we’ll be interested to observe any geometrical properties in the embedding vectors generated

from text.

A priori there is no law of nature that the different embedding spaces have any geometric

relation to each other, nor that they represent the same conceptual space. Though we do

note that the various skip layers in the transformer blocks probably create quite a strong

connection between two consecutive layers. In this Section we’ll put this question to the

test and see how the embeddings of some example sentences evolve as they traverse through

the layers. For further resources on this topic we do not cite direct papers, but note that the

idea of "embedding evolutions" is related to (or better known as) the residual stream of a
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transformer.

Using the Python transformers library we can easily access the interim embedding lay-

ers of BERT. With the 12 transformer blocks we get of course 12 output embedding col-

lections, but we also have the input to the first transformer block at index 0, totaling at 13

embedding collections. Recall that the inputs to the first transformer block are the context-

free embeddings that has been enhanced with the positional encodings and the sentence

encoding.

We’ve taken two texts to study these token evolutions:

"The mouse was gone. The cat sat useless."

and

"The mouse was gone. The computer sat useless."

We’re using standard BERT, and in these sentences each word is a single token. The idea

with these texts is that the token "mouse" in the first sentence will have a different meaning

depending on the second sentence – it might be a mammal or a computer peripheral. We’ve

plotted the embeddings of all the tokens as they ’evolve’ through the transformer blocks in

Figure 20. We noticed that the change in the embeddings at the last transformer block was

much larger than in the other layers, and we’ve plotted the path both with the last jump

included and not.

So it seems that the embeddings are traversing together. And excepting the last embedding

layer, which is most sensitive to retrainings due to lack of gradient decay8, in the PCA

projection they seem to be going to the same direction. This can be partially illusory, as for

the direction to look similar, we just need to have a few coordinates (out of 768) where the

changes happen strongly in the same direction, and the PCA will "favor" those directions in

the projection direction as it is fitting to our data where we are looking at these evolution

paths. In Figure 21 we’ve plotted the paths of only a few tokens to show that the movements

are not quite as uniform as Figure 20 might suggest, especially since here too we should

expect the "PCA illusion" to be at play.

8. Discussion on this can be found e.g. in Rogers, Kovaleva, and Rumshisky 2020.
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(a) Last embedding not included.
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(b) Last embedding included.

Figure 20: PCA projection of the evolution of token-level embeddings of two disjoint sen-

tences; "The mouse was gone. The cat sat useless." and "The mouse was gone. The computer

sat useless.". Red dot marks the starting embedding.
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(a) The ’mouse’ token.
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(b) The ’useless’ token.
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(c) Both the ’mouse’ and ’use-

less’ tokens.

Figure 21: PCA projection of the evolution of only one or two tokens.
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Another approach to get a better picture on how the evolution paths look is to check for the

consecutive distances, cosine similarities and norms, see Figure 22. What we see here is that

these embeddings tend to take "steps" of roughly the same length, change the "direction"

very little9 one at almost each step and move somewhat linearly away from the origin. Note

that the radial movement can be the reason for only a small amount of each step, as the

Euclidean distance ’hop’ seems to be around 6, but the norms increase by only about 2 per

layer.

0.0 2.5 5.0 7.5 10.0

5

10

15

20

Euclidean Distances
[CLS] token
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Figure 22: The Euclidean distances and cosine similarities of consecutive embeddings of the

tokens in "The mouse was gone. The cat sat useless.", and the norms of the embeddings at

each step.

Our second research question asked if we can observe the changes in the embedding vectors

as they ’evolve’ in the encoder stack. Thus with this section we have answered this research

question in the positive.

4.4 Semantic content and structure of the embeddings after the en-

coder

We start by emphasizing that in this section we will be working solely with the final output

of embeddings from the encoder. In particular, these are the embedding vectors that most

down-stream tasks use as their input.

9. This is a bit surprising; any two random directions in a high dimensional Euclidean space are almost

orthogonal with an overwhelmingly high probability. We conjecture that this effect arises from the skip con-

nections that "stabilize" the evolution of the embedding vectors.
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The claim we want to study in this section relates to the question about how well we should

expect the semantic content of embeddings to be related to the structure of Rn. As discussed

in the beginning of this chapter, it is customary to use cosine similarity or Euclidean distance

to measure embeddings, see again e.g. Rogers, Kovaleva, and Rumshisky 2020, but it is quite

a strong implicit claim that this works, especially in relation to semantic content. Indeed, it is

not at all obvious if the embeddings should have any relation to the structure we instictually

affiliate with Euclidean spaces, or if they are just collections of numbers.

To emphasize the issue, consider another case where the vectors we study do not come from

a language model but from some database. One of the coordinates is the last three numbers

of a license plate, another a postal code, the third a serial number of a mechanical part and

another mass in kilograms. Such vectors do consist of numbers, but there is no reason to

assume that e.g. an angle would be a suitable measure for the similarity of two vectors. If the

serial number and licence plate numbers are even pseudorandomly assigned, even Euclidean

distance is probably a useless concept10. In this kind of setting the problem is related to the

fact that some numbers like weight represent continuous quantities while other like a serial

number are just indexes. They might not have even a reasonable ordering related to them.

For the embedding vectors we do sort of expect the structure of Rn to be somehow involved,

though we should remember that when being trained, the model is just trying to minimize

the loss function over training data. The loss function doesn’t (in any case we’re aware

of) contain any component that would reward or penalize the model based on how well the

semantic structure of the embedding space correlates with linear algebra.11 So the fact that

we do find some relation is a noteworthy and a non-trivial observation.

On the other extreme, we do not expect that the embedding vectors would place any specific

weight to values like 3.14 or 42, as these are at least somewhat cultural concepts. So where

exactly will we land here? How much of the familiar structure of the Euclidean space is

present? Before diving into the literature, we’ll do a few preliminary tests. We first look at

the topology of the space with the question if similar concepts will have similar embeddings

10. And the problem can’t be solved by "just normalizing the data".
11. Though, this could be argued against by the fact that cross entropy loss is at least continuous, so the

continuity might get rewarded by some meta-mechanism.
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in the sense of Euclidean distance. This is our weak approach to something like continuity.

We then move to more algebraic questions by studying the difference vectors of embeddings

and see if those have anything reasonable to say for use.12

4.4.1 Topology of embeddings

Here we want to see if sentences that have similar semantic content have also similar embed-

ding vectors. To this end we have generated 4 sets of sentences that have roughly the same

semantic content within the group but written in slightly different ways.

• 27 "Hello!" -sentences where the highlighted three words vary through synonyms.{ Hi
Howdy
Hello

}
there! I am

{
glad

happy
felicitous

}
to meet such a nice

{ person
individual
somebody

}
here.

• 27 "New car" -sentences where the highlighted three words vary through synonyms.

We’re going to buy the
{ car

auto
automobile

}
today. We

want something that’s
{

fast
quick

speedy

}
and

{
cheap

inexpensive
affordable

}
.

• 27 "Happy boss" -sentences where the highlighted three words vary through syn-

onyms.

The
{

boss
manager

supervisor

}
was

{ glad
happy

content

}
with the

{employee
worker

staff

}
for the new sales record.

• 10 "Meeting" sentences, generated with the help of chatGPT. We’ve listed three exam-

ples here, the full list can be found from https://github.com/ramiluisto/NLP_toybox/

blob/main/data/sentence_pairs_extended.json.

– "The meeting is set for Monday at 10 AM, and breakfast will be provided by

someone.",

– "Someone will provide breakfast at the meeting, which is scheduled for 10 AM

on Monday.",

12. Our separation of the concepts of Rn to topological vs algebraic is sort illusory as the standard topology

of Rn is completely determined by the linear algebraic structure. And the so called exotic topological structures

of Rn really are exotic and finding one of those here would be nothing short of a miracle. So this is a conceptual

study and separation, not a mathematical one.
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– "We’ve arranged the meeting for 10 AM on Monday, with breakfast being brought

by a participant.",

There are of course slight differences in the content of these sentences within each group,

since e.g. "Howdy" vs. "Hello" carry different cultural connotations. Regardless, the sen-

tences should be more similar within each group than between different groups. We also

added two classes of random sentences; one class that sampled random characters and an-

other that sampled random English words. We’ve taken the [CLS]-token embedding vectors

of these sentences and created a 2D PCA projection of the different classes, shown in Figure

23.
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Figure 23: The PCA projection of the [CLS] embeddings of various synonymous sentences.

As we’ve hoped, we see clearly different components for these different sentence types,

and that within a group the sentences are similar. This is evidence towards the "semantic

continuity" that we would like to see here, and answers our research question 3a which was

asking for just this type of connection between the semantic content of text and the topology

of the embedding vectors arising from it. Furthermore note that the two types of random

sentences are quite similar, but there seems to be a level of differentiation. So the model can

detect nonsense from non-nonsense, and even between types of nonsense.
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4.4.2 Algebra of embeddings

We now turn to look at the "algebraic" structure of embeddings. In particular, an important

part of the embedding space is that it is not just a topological space, but that the concepts

that it encodes have some relation with the linear algebra structure. In particular, the vector

differences in embedding vectors convey some meaning. To illustrate what we mean, we’ve

created sentence pairs in a few different categories, about 10 from each category. We’ve

listed an example pair from each category in Table 6, the full set of pairs is available at

https://github.com/ramiluisto/NLP_toybox/blob/main/data/sentence_pairs_extended.json.

Difference Sentences

Bright-Dim "The bright light illuminated the room."

"The dim light illuminated the room."

Doctor-Nurse "The doctor was walking down the street."

"The nurse was walking down the street."

Female-Male "She went home."

"He went home."

Finnish-Czech "The Finnish scientist discovered a new element."

"The Czech scientist discovered a new element."

Funny-Sad "The movie was so funny, we couldn’t believe it."

"The movie was so sad, we couldn’t believe it."

Laugh-Cry "The baby was laughing."

"The baby was crying."

Table 6: Sentence pairs for difference analysis.

For each sentence pair (S1,S2) we’ve then created the embedding vectors (E1,E2) of the

[CLS] token of these sentences with the standard BERT, and taken the vector difference

E2 −E1 of the embeddings. These differences are PCA-visualized in Figure 24 with the

average vector of each set of 10 differences marked with an arrow.

What we note here is that many of the differences are clearly correlated within a type and
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Figure 24: PCA projection of the differences in the embedding vectors. The points represent

individual differences and the arrows the average difference vector of each type.

separated from each other! So the algebraic action of taking a difference does bear some

connection to the semantic content. In particular, we could now consider that the green

vector, which is the average value of the green differences, is a sort of internal representation

of the idea of "more sad than happy". The idea now is that with this interpretation we can try

to see if these concepts are correlated in the internal model of the, well, model.

The way we check the correlation is by looking at the cosine similarity of the average vectors

within each difference class – we have listed these in Table 7. We’ve highlighted some of

the extreme values: the smallest similarity is between the concepts of "Doctor vs Nurse"

and "Bright vs Dim" - the model seems to find very little similarity between light level and

these two professions. On the other hand, the cosine similarity between "Funny vs Sad" and

"Laugh vs Cry" is quite high – this sounds reasonable as these differences do seem to be

strongly related. We also note some higher correlation between brightness and mood, and

amusingly in Finnish people being more likely to cry then the Czech.
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A very crucial point here is, however, the similarity between "Female vs Male" and "Doctor

vs Nurse". With cosine similarity of −0.644 the model seems to have an internal model of

the world where these two differences have a strong anticorrelation. In plain English, BERT

seems to think that being a doctor correlates strongly with being a man and being a nurse

correlates strongly with being a woman. This is not an original observation, but a classical

example and a good starting point in the analysis of bias in language models. The issue here

is that this quite misogynistic bias is something that has been present in the training material

of the language model, and thus BERT has learned to model itself accordingly. So we have

better optimized at minimizing the loss function at training time by fitting to this bias, but

when building AIs that have any sort of agency in the real world, this will be a bad thing.

Quantity 1 Quantity 2 Cosine similarity

Bright-Dim Doctor-Nurse 0.002

Bright-Dim Female-Male 0.056

Bright-Dim Finnish-Czech 0.097

Bright-Dim Funny-Sad 0.133

Bright-Dim Laugh-Cry 0.145

Doctor-Nurse Female-Male -0.644

Doctor-Nurse Finnish-Czech -0.046

Doctor-Nurse Funny-Sad 0.018

Doctor-Nurse Laugh-Cry 0.150

Female-Male Finnish-Czech 0.018

Female-Male Funny-Sad -0.073

Female-Male Laugh-Cry -0.064

Finnish-Czech Funny-Sad -0.022

Finnish-Czech Laugh-Cry -0.173

Funny-Sad Laugh-Cry 0.465

Table 7: Table showing the cosine similarities of the average difference vectors. We’ve

highlighted some of the more extreme values.

These results answer our research question 3b, which was asking if there is an observable
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connection between the linear algebraic structure of the embedding vectors and the semantic

content of the text from which they arise.

4.4.3 Geometry of embeddings

For the geometry of embeddings we base our approach to the idea that a single point or a

pair of points has no geometry - geometry will be a property of a large collection of points.13

Trying to understand the geometry of BERT is not a novel idea, see e.g. Reif et al. 2019.

A full geometric analysis is beyond the scope of this thesis, but we do want to observe the

nontriviality of the task. To this end we’ve generated a random sample of 3860 Wikipedia

texts via the Wikipedia API14 and taken a collection of 3257 Twitter texts from a Kaggle

dataset15. In Figure 25 we show the basic projections of the [CLS] token embeddings of

these texts.

(a) PCA projection (b) t-SNE projection (c) UMAP projection

Figure 25: Three projections of Wikipedia and Twitter data.

What is obvious from the very surface is, that the different data sources seem to be quite

dissimilar in the embedding space, and that they contain nontrivial geometrical structures –

especially for the Wikipedia embeddings.16 This difference in structures is also supported

by the distribution of our various metrics; see Figure 26.

13. Three points already form a triangle, and we can argue that geometry starts. For the current purposes,

however, three is still a small number.
14. See https://github.com/ramiluisto/NLP_toybox/blob/main/src/wikipedia_datafetch.py.
15. https://huggingface.co/datasets/tweet_eval/tree/main/emotion
16. Maybe partially due to the longer length and thus higher possible variations?
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(a) Euclidean norm distribution (b) Euclidean distance distribution

(c) Dot product distribution (d) Cosine similarity distribution

Figure 26: Distribution visualizations of a sampling of random Wikipedia and Twitter texts.
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One very strong phenomenon we observe is that within each class of texts the cosine sim-

ilarities are all positive, and quite large even. As previously mentioned, this contrasts the

fact that randomly sampled vectors in high-dimensional Euclidean spaces tend to be almost

orthogonal. The observation of this discrepancy has been observed also in Ethayarajh 2019

where they note that randomly sampled word embeddings tend to not average around zero

for BERT or GPT-2, though we are here only looking at the [CLS] token embeddings. Our

conjecture here is that idea of two concepts being linguistically "independent" (i.e. cosine

similarity near zero) or "opposites" (i.e. cosine similarity near −1) is very context depen-

dent. For example, the sentences "The room was dark." and "The room was bright." do

contain in some sense opposite claims, but they also both discuss the illumination status of

rooms in a short grammatically correct English sentences. Even the singular words/tokens

"dark" and "bright" are opposites only in a particular contexts; they are both adjectives in

English and used in similar sentences and we simply ignore their similarities when thinking

them as opposites.

With this we can also claim a positive answer to our research question 3c, asking for ob-

servable geometrical properties in the data clouds arising from the embedding vectors of text

collections.

4.5 Some practical applications of the embeddings

This chapter has been filled with various probings to the behaviour and structure of the em-

bedding spaces. The motivation has been to observe some inherent properties of embedding

vectors and the spaces they form, but now we wish to close up this chapter by listing some

of the practical uses of embeddings.

4.5.1 Vector databases for text search

Creating text embeddings for a large text corpus can be very useful in creating semantic

search functionality to an otherwise unstructured collection of data. The idea here is that we

split our collections to suitable lengths, e.g. to about 512 tokens, and create a database where

we have the text, possibly some tags about their source and location, and the embeddings of
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these texts. (In practice we might split the text with some overlap to avoid any critical words

or sentences losing their context in a split boundary.) Then when you wish to search for e.g.

"all texts that discuss bears walking on their hind legs", you simply create the embedding for

this query and find the top N database entries sorted by the cosine similarities between the

query text embedding and the embeddings in the database. As we’ve seen in this section,

such an approach has promise since the embedding vectors seem to capture semantic ideas.

At this point of the thesis, the natural question of course is: "which embedding should you

use?" For a given text of N tokens we get 13 · (N +2) embeddings from the BERT model. A

classical quick choice would be the [CLS] token embedding from the last layer, but we note

that already in (Devlin et al. 2019) the authors recommend fine-tuning before using [CLS] to

tasks outside sentence pair prediction. Other solutions might replace (or augment) the [CLS]

token embedding with an average or coordinate-wise max of the other embeddings from the

final layer. You might even want to include embeddings from lower levels in some cases.

Then there is the question if you should use the basic BERT model, or fine-tune it on your

corpus data in some fashion.

None of these questions have a universal correct answer, but understanding even the basics

of embeddings is crucial to making an informed decision.

4.5.2 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) is a technique for improving the context awareness

of text-generating AIs like chatGPT. The idea here is that we have in the backend of the

system a vector database of relevant data. When a user writes a query, before the query

is passed to the chat-AI as a prompt, we perform a vector database search to find relevant

context data, and pass that on with the prompt.

This can greatly improve the chat-AI performance, and also the reliability. You have less to

fear about hallucination when the chat-AI can give you a link to e.g. internal documentation.

A classical application example would be a chatbot that aids you to study a company’s in-

ternal documentation. See e.g. the RoboCorp ReMark at https://chat.robocorp.com/ for an

example.
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4.5.3 Compute-effective NLP

Training 110M parameter language models takes compute resources, even if you only do

fine-tuning. Running the models is orders of magnitudes faster and less resource-heavy. For

this reason we can often use models like BERT to simply do a static mapping of texts to

embedding vectors that we can use as features, and then use other less resource-intensive

ML tools on those features.

Here it is even more important to grasp the differences of the different embedding types so

that you can choose the right ones for the task.

4.5.4 Interpretability

In many practical applications of ML, it is not enough to report the accuracy or f1 score of

the system and call it a day. Especially in systems that handle sensitive data or which are

involved in delicate operations like medical care, you usually have to be able to explain at

least partially what the system is doing, how and why. For large neural networks like BERT

it is, at least currently, impossible to completely understand what is going on, but we can do

better than calling it just a black box. The various methods used here can be included in a

study to see what a full system is really made of, and get at least partial answers to questions

about why something is happening.

4.5.5 Bias detection

As we’ve noted, the BERT model has biases. To be able to counteract these we must first

find them, and in both of these tasks we must turn our attention to the internals of the model.

Embeddings are not the full story here for BERT and other transformer models as the at-

tention mechanism is very crucial here as e.g. the creator of bias, but it is in the embedding

vectors that we often find the biases from.
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5 Conclusion(s)

We finish the thesis, naturally, by writing up our conclusions.

We stated three research questions in the introduction, and we’ve found a suitable answer to

each:

1. The differences between positional encodings, context-free input embedding vectors

and sentence type embeddings are very clear. Their differences are easily visible both

in their intergroup statistical distributions and in their pairwise cosine similarities be-

tween the groups. The exception being some special tokens, with the [CLS] token

and the index 0 positional encoding being so close to essentially be the same vector

learned via two different paths. This is natural as these two vectors are always summed

together and thus we cannot, under normal operations, observe them separately.

2. The evolution of the embedding vectors through the encoder stack was observed,

though we did not probe into what exactly was learned in the progress. However,

we could see how the meaning of homonyms (computer mouse vs. an animal mouse)

drifted apart in the evolution.

3. In studying synthetic and real-world data we were able to observe the connections of

the semantic content of text to the topology, algebra and geometry of R768. This also

provides a very strong indicator on the usefulness of the BERT embeddings in various

downstream tasks.

5.1 Some post facto reflections and a critical look at the research method-

ology

As discussed in Section 4.1, our research "methodology" was based on exploration via hy-

potheses and tests driven by curiosity and personal preferences. This naturally made the

approach personally very fulfilling (especially since we at times succeeded) and fun, but

now it is a natural point to reflect a bit – also on the shortcomings of the approach.

Since this thesis is a work of limited scope, we have naturally selected only the most inter-
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esting observations we have made to be included in the final version. This is both how most

of scientific publication works, and also very close to what we would call p-hacking.1 By

this we mean that there is a balance in how to report one’s research results. On the one hand,

no-one wants to overwhelm the reader (or reviewer) by describing all the intellectual dead

ends that were traversed on the way to the result, and so it is best to focus on the interesting

results that ended up working. On the other hand, it is counter productive to science as a

whole to try to pretend that you set out to find a particular discovery when in fact you tried a

thousand things and only showed the one that happened to stick to the wall. Especially since

if you leave undocumented the dead ends you found, you only leave them unmapped for the

next unwary researcher.

In this work we set out to understand how the geometry and structure of embeddings look

like, and we’ve reported some of the more easily digestable and demonstrable findings. But

at the source folder of this thesis, our ./img folder has over 300 images, many of them

being various plots generated with Python data analysis tools. Most of these pictures are not

useless or wrong, but they tend to be either less striking or not so informative on the various

exciting points of the geometry that we wanted to discuss. This does not mean that we are

cheating, but we still need to keep in mind that the plots and data we see are the crème de la

crème of the many things we could be showing.

Besides this "survivorship bias" of plots, there are also several research avenues which we

approached but either did not bear fruit, or bore fruit but in such a laborious way that we

could not think of a way to include the results in this thesis without severly overcrowding it.

For example, we did a few deep dives to see how biases evolve through the encoder block,

and a more detailed study on some of the subparts that seemed to be visible in the various

2D projections of our Wikipedia and Twitter datasets. Neither of these approaches did not

yield anything exciting, at least on our first pass. We also did a somewhat deep mathematical

analysis on the geometry of almost orthogonal vectors in R768 and, while interesting, it did

not really support any of the main observations we have focused here. Thus all of these

avenues have been left out, though we hope to report on them in some other future work.

It would have been nice if we had been able to draw a better ’map’ of which avenues of study

1. See e.g. https://en.wikipedia.org/wiki/Data_dredging.
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we explored and how they panned out. But in the end despite some outer appearances this

is not a personal learning diary but a master’s thesis and it is hard to find a scientific way to

report that an approach was tried and abandoned due to reasons like "did not feel promising",

"was not exciting enough" or "I kind of forgot about this".

With this disparagement of our methodology out of the way, we still find the approach to have

been a success. With our exploratory approach we had motivation to familiarize ourselves

with wide swathes of modern research and we ran across enough interesting phenomena that

we could afford to be picky about what we include. Explaining our discoveries and trying to

find matches in the literature that used very different terminology (and usually a more mature

approach) helped us grasp the concept on a much deeper level than if we had at the start read

existing literature and written down our own summaries.

5.2 Some possible further research questions

There are several things that we feel would merit further study. We list some of them here.

1. We noted that the cosine similarities between embeddings, context-free or context-

aware, were not averaging around zero. (See again also Ethayarajh 2019.) We dis-

cussed some hypothesis on how the concept of "opposites" is very context dependent.

Are there methods where we could tease out the idea of oppositeness in embedding

vectors? E.g. by substracting from the vectors all "adjectiveness" and the like? Or by

just doing orthogonal projections to each others?

2. In continuation of the previous question, could we train a GAN to find sentence pairs

that BERT would consider truly opposites? Would we be able to find any that are even

somewhat grammatical? This question bears resemblance to techniques used to extract

information about what kinds of features maximize the activation of various computer

vision model subcomponents.

3. What really is the 1-dimensional structure of the positional encodings? Is it a spiral or

something more fractal-like? Measures of Hausdorff-dimension or persistent homol-

ogy might be interesting. Especially if we try to find common themes across a few

different model types.
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4. The context-free embedding vectors had "pac-man" shape and some other geometric

properties in the PCA projection. What kinds of components could we distinguish

with deeper study?

5. The process of compressing language models by dropping the bit size of floating points

used in the weights is very popular. Does this create any noticable non-trivial effects

on the geometry of the embeddings?

5.3 Epilogue

As first-year student I once happened upon a poster session of some physics students. The

one poster that caught my eye was a study on how a boiled egg will spin differently from

unboiled ones. They had done the science and concluded with a sentence that stuck to my

mind for years:

We were not able to replicate the result, but we were able to observe the phe-

nomenon.

This could be a slogan for this thesis as well. There are hundreds of high-quality studies

on the behaviour of BERT alone, see e.g. Rogers, Kovaleva, and Rumshisky 2020 and the

references within, and most of the tests we tried we have then found in the literature with

more extensive analyses and more solid statistical foundations. But even if we haven’t found

anything new here we’ve been able to observe many interesting phenomenon. And that has

been very much worth the effort.
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