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We study theorems from Functional Analysis with regard to their relationship with various weak choice principles
and prove several results about them: “Every infinite-dimensional Banach space has a well-orderable Hamel
basis” is equivalent to AC; “R can be well-ordered” implies “no infinite-dimensional Banach space has a Hamel
basis of cardinality < 2ℵ0 ”, thus the latter statement is true in every Fraenkel-Mostowski model of ZFA; “No
infinite-dimensional Banach space has a Hamel basis of cardinality < 2ℵ0 ” is not provable in ZF; “No infinite-
dimensional Banach space has a well-orderable Hamel basis of cardinality < 2ℵ0 ” is provable in ZF; ACℵ0

fin (the
Axiom of Choice for denumerable families of non-empty finite sets) is equivalent to “no infinite-dimensional
Banach space has a Hamel basis which can be written as a denumerable union of finite sets”; Mazur’s Lemma
(“If X is an infinite-dimensional Banach space, Y is a finite-dimensional vector subspace of X , and ε > 0, then
there is a unit vector x ∈ X such that ||y|| ≤ (1+ ε)||y + αx || for all y ∈ Y and all scalars α”) is provable in ZF;
“A real normed vector space X is finite-dimensional if and only if its closed unit ball BX = {x ∈ X : ||x || ≤ 1}
is compact” is provable in ZF; DC (Principle of Dependent Choices) + “R can be well-ordered” does not
imply the Hahn-Banach Theorem (HB) in ZF; HB and “no infinite-dimensional Banach space has a Hamel
basis of cardinality < 2ℵ0 ” are independent from each other in ZF; “No infinite-dimensional Banach space
can be written as a denumerable union of finite-dimensional subspaces” lies in strength between ACℵ0 (the
Axiom of Countable Choice) and ACℵ0

fin ; DC implies “No infinite-dimensional Banach space can be written
as a denumerable union of closed proper subspaces” which in turn implies ACℵ0 ; “Every infinite-dimensional
Banach space has a denumerable linearly independent subset” is a theorem of ZF+ ACℵ0 , but not a theorem
of ZF; and “Every infinite-dimensional Banach space has a linearly independent subset of cardinality ≥ 2ℵ0 ”
implies “every Dedekind-finite set is finite”.

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Notation and terminology

We start with the definitions of notions that will be used in the sequel.

Definition 1.1 Let (V,+, ·) be a vector space over a field F .

1. If X ⊆ V , then 〈X〉 denotes the linear span of X , i.e., the subspace of V which consists of all finite linear
combinations of elements of X .

2. A set B ⊆ V is called a Hamel basis (or simply a basis) for V if B is linearly independent and V = 〈B〉. (If
B is a Hamel basis for V , then every vector v ∈ V can be expressed uniquely as a finite linear combination
of elements of B.)

It is a standard result, taught in every undergraduate Linear Algebra course, that every finitely generated vector
space (i.e., every vector space which is spanned by a finite set of vectors) has a basis, and that all bases of a finitely
generated vector space are equipotent: the number of elements of any basis of a finitely generated vector space V
is called the dimension of V and it is denoted by dim(V ).
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Definition 1.2 A vector space (V,+, ·) over a field F is called finite-dimensional if V is finitely generated.
Otherwise, V is called infinite-dimensional.

The result that every finite-dimensional vector space (over any field) has a basis is certainly a theorem of ZF,
that is, in order to construct a basis for a given finite-dimensional vector space, one does not need to invoke any
form of choice. However, the Axiom of Choice AC is indispensable in the theory of infinite-dimensional spaces. In
particular, strange phenomena such as the existence of a (infinite-dimensional) vector space with no Hamel basis
or a vector space which has two bases of different cardinalities are relatively consistent with set theory without
AC (cf., e.g., [8, Theorem 10.11 and Exercise 5, p. 149]). Furthermore, it is a renowned result of Blass [4] that, in
ZF, AC is equivalent to “for every field F , every vector space over F has a basis”.

Definition 1.3 Let (X, d) be a metric space.

1. X is complete if every Cauchy sequence of elements of X converges in X .
2. X is Baire if it cannot be written as a countable union of nowhere dense sets (i.e., sets whose closure has

empty interior).
3. X is compact if every open cover of X has a finite subcover.
4. X is separable if it has a countable dense subset.

Definition 1.4 1. A Banach space is a complete normed vector space over R, i.e., a real vector space with a
norm which is complete with respect to the metric induced by the norm.

2. A vector space X over R with an inner product is a Hilbert space if X is complete with respect to the norm
induced by the inner product.

3. Let I be any set and let H = �2(I ) denote the set of all functions x : I → R such that x(i) = 0 for all but a
countable number of i and

∑
i∈I (x(i))2 < ∞ (due to the definition of x this is the usual convergence of series),

which is equipped with pointwise operations of addition and scalar multiplication (with scalars in R). For x and
y in H define 〈x, y〉 = ∑

i∈I x(i)y(i). It is well-known (cf. [9,16]) that H is a Hilbert space (i.e., 〈 , 〉 is an inner
product and H is a Banach space with the induced norm ||x || = √〈x, x〉).

Definition 1.5 1. A set X is called finite if there exists a natural number n and a bijection f : n → X . Otherwise,
X is called infinite.

2. A set X is called Dedekind-finite if there is no one-to-one mapping f : ω → X . Otherwise, X is called
Dedekind-infinite.

Equivalently, X is Dedekind-finite if there is no one-to-one mapping from X into a proper subset of X .
3. An infinite set X is called amorphous if X cannot be expressed as a disjoint union of two infinite subsets.

Definition 1.6 1. AC is the Axiom of Choice, i.e., for every set X of non-empty sets there is a function f with
domain X such that for every x ∈ X , f (x) ∈ X . Such a function f is called a choice function for X .

2. MC is the Axiom of Multiple Choice, i.e., for every set X of non-empty sets there is a function f with domain
X such that for every x ∈ X , f (x) is a non-empty finite subset of x . Such a function f is called a multiple choice
function for X .

3. MCℵ0 is MC restricted to denumerable families of non-empty sets. It is known (cf. [6]) that MCℵ0 is equivalent
to “every denumerable family A of non-empty sets has a partial multiple choice function (i.e., there is an infinite
subfamily B of A with a multiple choice function)”

4. ACℵ0 is the Axiom of Countable Choice, i.e., AC restricted to denumerable (= countably infinite) families of
non-empty sets. It is known (cf. [6]) that ACℵ0 is equivalent to “every denumerable family A of non-empty sets
has a partial choice function”.

5. ACℵ0

fin is AC restricted to denumerable families of non-empty finite sets. It is known (cf. [6]) that ACℵ0

fin is
equivalent to “every denumerable family of non-empty finite sets has a partial choice function”.

6. PKWℵ0

fin,≥2 is “every denumerable family A of finite sets each with at least two elements has a partial
Kinna-Wagner selection function”, i.e., there is an infinite subfamily B of A and a function f with domain B such
that for every B ∈ B, f (B) is a non-empty proper subset of B ( f is a partial Kinna-Wagner selection function for
A—and a Kinna-Wagner selection function for B).

7. Let n be an integer greater than or equal to 2. PACℵ0≤n is “every denumerable family of non-empty sets each
with at most n elements has a partial choice function”.
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8. DF=F is “every Dedekind-finite set is finite”. It is known (cf. [6]) that ACℵ0

fin is strictly weaker than DF=F
in ZF.

9. ACR is AC restricted to families of non-empty sets of reals. ACR is equivalent to the statement “R can be
well-ordered” (cf. [6]).

10. DC is the Principle of Dependent Choices: Let R be a binary relation on a non-empty set A such that
(∀x ∈ A)(∃y ∈ A)(x R y). Then there is a sequence (xn)n∈ω of elements of A such that xn R xn+1 for all n ∈ ω.

11. Let κ be an infinite well-ordered cardinal number. Wκ is the statement: For every set X , either |X | ≤ κ or
κ ≤ |X |. It is known (cf. [6, 8]) that “(∀κ)Wκ” is equivalent to AC.

12. CH is the Continuum Hypothesis, i.e., 2ℵ0 = ℵ1.
13. BPI is the Boolean Prime Ideal Theorem: Every non-trivial Boolean algebra has a prime ideal.
14. OP is the Ordering Principle: Every set can be linearly ordered.
15. BCT is the Baire Category Theorem: Every complete metric space is Baire. It is a beautiful result of Blair

(cf. [3] or [5, Theorem 4.106, p. 105]) that BCT is, in ZF, equivalent to DC.
We note that BCT is a theorem of ZF, if we restrict to the class of separable complete metric spaces, since

these spaces are second countable, i.e., they have a countable base for their topology (the proof of [14, Theorem
7.2, pp. 294–295] goes through, in ZF, with the obvious adaptations).

16. HB is the Hahn-Banach Theorem: Suppose M is a subspace of a real vector space X , p : X → R is a
sublinear functional (i.e., p(x + y) ≤ p(x)+ p(y) and p(t x) = tp(x), if x, y ∈ X and t ≥ 0), and f : M → R

is a linear functional such that f (x) ≤ p(x) for every x ∈ M . Then there exists a linear functional F : X → R

such that F � M = f and −p(−x) ≤ F(x) ≤ p(x) for every x ∈ X .
We recall here that BPI implies HB (the implication is not reversible in ZF) and that DC does not imply HB in

ZF (cf. [6]).
A well-known consequence of HB is the Hahn-Banach Theorem for normed spaces: Let X be a normed vector

space, let Y a linear subspace of X , and let f : Y → R a bounded linear functional, that is

|| f ||Y ∗ = sup
x∈Y,||x ||=1

| f (x)| < ∞,

where Y ∗ is the dual space of Y consisting of all bounded linear functionals on Y equipped with the above
norm. (We also recall here that for all y ∈ Y , | f (y)| ≤ || f ||Y ∗ ||y||.) Then there exists a bounded linear functional
f̃ : X → R such that f̃ � Y = f and || f̃ ||X∗ = || f ||Y ∗ .

In particular, if X is a non-trivial normed vector space and x0 ∈ X\{0}, then there exists a bounded linear
functional f̃ : X → R such that || f̃ ||X∗ = 1 and f̃ (x0) = ||x0||X .

17. Let (B,⊕,�, 0B, 1B) be a Boolean algebra. A real valued measure on B is a mapping m : B → [0, 1] such
that m(1B) = 1 and m is finitely additive, i.e., for every x, y ∈ B, if x � y = 0B , then m(x ⊕ y) = m(x)+ m(y).
(It follows that m(0B) = 0.)

We shall also use the following standard notation: As usual, ω denotes the set of natural numbers; ZF is
Zermelo-Fraenkel set theory without AC; ZFC is ZF+ AC; ZFA is ZF with the Axiom of Extensionality modified
in order to allow the existence of atoms; if X is a set, then [X ]<ω denotes the set of finite subsets of X ; and if I and
J are sets and λ is an infinite well-ordered cardinal, then Fn(I, J, λ) denotes the set of all partial functions p from
I into J with |p| < λ (i.e., there is a one-to-one mapping f : p → λ, but no one-to-one mapping g : λ → p).

2 Introduction and aims

Many (or most) of the results in Banach space theory, and in mathematical analysis in general, are provable in
ZF+ DC set theory; among the (rather) few exceptions is the Hahn-Banach Theorem HB. For example, we recall
that BCT (hence DC) is the main apparatus used to prove fundamental theorems of Functional Analysis like the
closed graph theorem, which in turn implies the uniform boundedness principle. To the best of our knowledge, it
is an open problem whether “closed graph theorem” implies DC or even “uniform boundedness principle” implies
ACℵ0 .

A part of the folklore in Functional Analysis is that if X is an infinite-dimensional Banach space, then X
has no denumerable Hamel basis, cf., e.g., [16, Exercise 1, p. 53]. The standard proof in the literature of this
very nice—and striking—result uses BCT. However, BCT is a weak form of choice, thus a proof which employs
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the latter form cannot be considered as a constructive one. It is therefore interesting and natural to ask whether
one actually needs any form of choice in order to derive that no infinite-dimensional Banach space admits a
denumerable Hamel basis. One of the aims of this paper is to establish that the answer to the above open problem
is that no choice is needed, and consequently the above functional analytic result is a theorem of ZF set theory. In
fact, we shall prove a stronger result, namely, in ZF, no infinite-dimensional Banach space has a well-orderable
Hamel basis of cardinality < 2ℵ0 .

We shall also consider the following closely related propositions, all provable from BCT:

(1) no infinite-dimensional Banach space has a Hamel basis which is written as a denumerable union of finite
sets,

(2) no infinite-dimensional Banach space can be written as a denumerable union of finite-dimensional sub-
spaces,

(3) no infinite-dimensional Banach space can be written as a denumerable union of closed proper subspaces.

We shall show that the situation with the above three propositions is strikingly different. In particular, we shall
establish that none of them can be proved without using some form of choice. Regarding statement (1), we shall
actually give its exact characterization in terms of weak choice principles. Specifically, it turns out that (1) is
equivalent to ACℵ0

fin (AC restricted to denumerable families of non-empty finite sets). Regarding statements (2) and
(3), we shall show that DC→ (3) → ACℵ0 → (2) → ACℵ0

fin.
In the realm of infinite-dimensional Banach spaces and in view of the fact that these spaces do not possess a

denumerable Hamel basis, it is natural to consider the following generalizations:

(a) no infinite-dimensional Banach space has a Hamel basis of cardinality < 2ℵ0 ,
(b) no infinite-dimensional Banach space has a well-orderable Hamel basis of cardinality < 2ℵ0 .

Clearly, (a) → (b), but we shall establish that (a) is not a theorem of ZF and also that (a) is provable in
ZF+ ACR (hence, it is true in every Fraenkel-Mostowski permutation model of ZFA), whereas in contrast with
the non-provability of (a) in ZF, we shall show that (b) is a theorem of ZF. For the proof of (a) (from ACR) we
shall present two proofs, one of them based on Mazur’s Lemma (“Let X be an infinite-dimensional Banach space,
let Y be a finite-dimensional vector subspace of X , and let ε > 0. Then there is a unit vector x ∈ X such that
||y|| ≤ (1+ ε)||y + αx || for all y ∈ Y and all scalars α”), which is the key for the proof of Banach’s important
theorem that every infinite-dimensional Banach space has a basic sequence (cf., e.g., [1, Lemma 1.42 and Theorem
1.43, p. 30]). The well-known proof of Mazur’s Lemma is conducted in ZFC (cf., e.g., [1, Lemma 1.42] or [13,
Lemma 1.a.6]) using the Hahn-Banach Theorem and the fact that the closed unit ball of a finite-dimensional
normed vector space is compact. In this paper, we shall establish that both Mazur’s Lemma and the statement “a
normed real vector space X is finite-dimensional if and only if the closed unit ball BX = {x ∈ X : ||x || ≤ 1} of
X is compact” are provable in ZF. We point out that all known proofs to us of the above second fact are given in
ZFC.

In this paper, we shall also construct a symmetric model N which satisfies DC+ ACR, hence N satisfies
statement (a), but N fails to satisfy HB. We note that the status of the implication “DC+ ACR → HB” is stated
as unknown in [6], hence our result settles the problem.

In this paper, we shall also consider the following related propositions:

(c) every infinite-dimensional Banach space has a linearly orderable Hamel basis,
(d) every infinite-dimensional Banach space has a well-orderable Hamel basis,
(e) every infinite-dimensional Banach space has a linearly independent subset of cardinality ≥ 2ℵ0 ,
(f) every infinite-dimensional Banach space has a denumerable linearly independent subset

and we shall prove that (c) → OP and (d) ↔ AC. We shall also prove that (f), hence (e), are not provable in ZF,
and even more we shall find their placement in the hierarchy of weak choice principles. We should like to point
out that it is unknown whether “every infinite-dimensional Banach space has a Hamel basis” implies AC.

In view of the above discussion, the major goal of this paper is to investigate and shed some light to the rather
unexplored topic of the existence of Hamel bases and their cardinality as well as the existence of (infinite) linearly
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independent sets and their cardinality in infinite-dimensional Banach spaces in terms of weak choice principles.
We believe that the results in the paper can be of interest not only to people in the foundations of mathematics but
also to a more general mathematical audience.

Finally, we should like to point out that the research in the current paper also aims to clarify that studying
fundamental theorems of Functional Analysis from the perspective of choice principles and their use or non-use in
the related proofs, provides deeper insight, understanding, and appreciation for the importance of these theorems.

In the paper, most vector spaces shall be assumed to be vector spaces over R. In any other case, we shall
explicitly state which field is used.

3 Results in ZF only

In this section, we shall prove that both of the following propositions,

1. a normed real vector space X is finite-dimensional if and only if its closed unit ball BX is compact, and
2. Mazur’s Lemma,

are provable in ZF. We begin with some lemmas, whose proofs rely on some known ZF-facts, which we provide
below.

(1) If (X, || · ||X ) and (Y, || · ||Y ) are two normed vector spaces, and if f : X → Y is a linear mapping which
is a topological homeomorphism, then (in ZF) the mapping || · || : X → R defined by ||x || = || f (x)||Y for all
x ∈ X , is a norm on X which is equivalent to || · ||X , i.e., there exist real numbers C , C ′ such that

||x || ≤ C ||x ||X and ||x ||X ≤ C ′||x || for all x ∈ X,

or equivalently,

|| f (x)||Y ≤ C ||x ||X and ||x ||X ≤ C ′|| f (x)||Y for all x ∈ X.

The latter fact can be easily established using the continuity of f and f −1. (Since f is continuous at 0, there
is a δ > 0 such that for all x ∈ X with ||x ||X < δ we have || f (x)||Y < 1. Then for each x ∈ BX we have
||(δ/2)x ||X = (δ/2)||x ||X ≤ δ/2 < δ hence || f ((δ/2)x)||Y < 1, so || f (x)||Y < 2/δ. It follows that for all x ∈ X ,
|| f (x/||x ||X )||Y < 2/δ, hence ‖x || = || f (x)||Y < (2/δ)||x ||X . Let C := 2/δ. Using the continuity of f −1, a
similar argument can be used in order to obtain a C ′ ∈ R which witnesses the second inequality.)

It readily follows that given a subset A of X ,

(i) A is complete in (the metric space) X if and only if f [A] is complete in (the metric space) Y ,
(ii) A is bounded in (the metric space) X if and only if f [A] is bounded in (the metric space) Y ,

(iii) A is closed in (the metric space) X if and only if f [A] is closed in (the metric space) Y ,
(iv) A is compact in (the metric space) X if and only if f [A] is compact in (the metric space) Y .

(2) If n is a positive integer and X is a n-dimensional normed real vector space, then every algebraic isomorphism
of X onto Rn (the standard n-dimensional normed real vector space) is a topological homeomorphism (cf. [16,
Theorem 1.21, p. 16]). In particular, if {x1, x2, . . . , xn} is a Hamel basis for X , then the algebraic isomorphism
f : X → Rn defined by f (a1x1 + · · · + an xn) = (a1, . . . , an) is a topological homeomorphism.

(3) From facts (1) and (2), it follows that, in ZF, given a n-dimensional normed real vector space X (where
n is some positive integer), any two norms on X are equivalent (if || · ||1 and || · ||2 are two norms on X and if
f : X → Rn is the above isomorphism which is a topological homeomorphism, then the norm || · || on X defined
in fact (1) above (with Y = Rn) is equivalent to both || · ||1 and || · ||2).

In view of facts (1) to (3), we easily obtain the results of the subsequent Lemma 3.1), Corollary 3.2) and
Lemma 3.4.

Lemma 3.1 (ZF) Let X be a (real) normed space and let Y be a finite-dimensional subspace of X. Then Y is
complete. In particular, every finite-dimensional normed space is complete, and thus a Banach space.
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Corollary 3.2 (ZF) Let (X, || · ||) be a finite-dimensional normed vector space and let Y be a non-empty
subset of X. Then Y is compact if and only if it is closed and bounded.

P r o o f . Assume that dim(X) = n for some positive integer n. Let f : X → Rn be the algebraic isomorphism
defined in fact (2) above (with respect to a prescribed Hamel basis {x1, x2, . . . , xn} for X ), which is a topological
homeomorphism. We also recall here the following well-known ZF-fact (cf. [6]) that, in ZF, a subset of Rn is
compact if and only if it is closed and bounded.

By fact (1), we have Y is compact in X if and only if f [Y ] is compact in Rn if and only if f [Y ] is closed and
bounded in Rn if and only if Y is closed and bounded in X . �

Lemma 3.3 (Riesz; ZF) If (X, || · ||) is a normed vector space, and if Y and Z are subspaces of X such
that Y is a closed proper subspace of Z, then for all ϑ ∈ (0, 1) there is a z ∈ Z such that ||z|| = 1 and
d(z, Y ) = inf{||z − y|| : y ∈ Y } ≥ ϑ , where d is the metric on X induced by the norm || · ||.

P r o o f . Cf. [9, Lemma 2.5-4, p. 78]. �

We show next that, in ZF, a finite-dimensional subspace of a normed vector space X is closed in X . In ZFC,
and in view of Lemma 3.1, the latter result is straightforward. A ZF-argument for the above result can also be
found in [16, Theorem 1.21]. However, we prefer to provide our own proof in order to exploit further ideas and
to give more information to the reader. In particular, we shall first prove, within ZF, the result of the subsequent
lemma, which appears as [9, Lemma 2.4-1, p. 72], but its proof there is carried out in ZFC.

Lemma 3.4 (ZF) Let (X, || · ||) be a normed space and let x1, . . . , xn be linearly independent vectors in X.
Then there is a constant c > 0 such that for all a1, . . . , am ∈ R, c(|a1| + · · · + |an|) ≤ ||a1x1 + · · · + an xn||.

P r o o f . Assume the hypothesis. Let Y = 〈x1, . . . , xn〉. Then (Y, || · ||) is a n-dimensional normed vector
space, and it is easy to verify that the mapping || · ||Y : Y → R defined by∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

ai xi

∣∣∣∣∣
∣∣∣∣∣
Y

=
n∑

i=1

|ai |

is a norm on Y . Since Y is finite-dimensional, it follows from fact (3) above that the norms || · || and || · ||Y are
equivalent. This immediately yields the conclusion of the lemma. �

In the (crude) proof of [9, Lemma 2.4-1, p. 72], the axiom of choice for denumerable families of non-empty
sets of reals is used. However, a suitable adjustment to that proof yields a ZF argument. We only give an outline
and we refer the reader to [9] for the rest of the details. We claim that if the formula

∃c > 0, ∀c1, c2, . . . , cn ∈ Q, c(|c1| + |c2| + · · · + |cn|) ≤ ||c1x1 + c2x2 + · · · + cn xn|| (1)

holds, then the conclusion of Lemma 3.4 follows. Assume that formula (1) holds, so let c > 0 be a witness of the
validity of (1). Assume a1, a2, . . . , an are in R. Let ε be an arbitrary positive real number. Then

c(|a1| + |a2| + · · · + |an|) ≤ ||a1x1 + a2x2 + · · · + an xn|| + ε. (2)

Indeed, choose rational numbers ci , 1 ≤ i ≤ n so that for 1 ≤ i ≤ n,

|ai − ci | < min

(
ε

2(||x1|| + ||x2|| + · · · + ||xn||) ,
ε

2cn

)
.

Using the triangle inequality of | · | and || · ||, it can be easily verified that

c(|a1| + |a2| + · · · + |an|) ≤ c(|c1| + |c2| + · · · + |cn|)+ ε

2
(3)

and

||c1x1 + c2x2 + · · · + cn xn|| ≤ ||a1x1 + a2x2 + · · · + an xn|| + ε

2
. (4)

Combining formulas (1), (3) and (4) gives us formula (2). So in order to derive the conclusion of Lemma 3.4, it
suffices to show that formula (1) holds. To this end, one can proceed as in the proof of [9, Lemma 2.4-1] except
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that no form of AC is required, since the choices that need to be made will be, for each k ∈ ω\{0}, from a set of
n-element sequences (b(k)

1 , . . . , b(k)
n ) of rationals such that

∑n
i=1 |b(k)

i | = 1 and ||b(k)
1 x1 + · · · + b(k)

n xn|| < 1
k .

Lemma 3.5 (ZF) Let (X, || · ||) be a normed vector space. Then the following hold:
(i) If Y is a finite-dimensional vector subspace of X, then Y is closed in X.
(ii) If Z is a proper vector subspace of X, then int(Z) = ∅ (i.e., Z has empty interior)

P r o o f . (i) Assume that Y is finite-dimensional. Then Y = 〈y0, . . . , yn〉, where {y0, . . . , yn} is a basis for Y .
We shall show that Y = Y . To this end, let y ∈ Y and, towards a proof by contradiction, assume that y �∈ Y . Then
the vectors y, y0, . . . , yn are linearly independent. Further, since y ∈ Y , we have that d(y, Y ) = inf{||y − z|| :
z ∈ Y } = 0. By Lemma 3.4, there is a constant c > 0 such that for all a0, . . . , an ∈ R,

||y + (−a0)y0 + · · · + (−an)yn|| ≥ c(1+ |a0| + · · · + |an|) ≥ c > 0. (5)

Since Y = 〈y0, . . . , yn〉, it follows from (5) that d(y, Y ) ≥ c > 0, a contradiction. Thus, y ∈ Y and Y is closed as
required.

(ii) This is a well-known ZF-fact. �

We should like to draw the reader’s attention here to the fact that the statement “if (X, d) is a metric space and
if Y is a complete subspace of X , then Y is closed in X” is not a theorem of ZF. Indeed, the latter statement lies
in strength between ACℵ0 and ACℵ0

fin. For the fact that ACℵ0 implies the above statement, the reader is referred to
any standard textbook of topology, pin-pointing easily the use of ACℵ0 . To see that the above statement implies
ACℵ0

fin, which is equivalent to “every denumerable family of non-empty finite sets has an infinite subfamily with a
choice function” (cf. [6]), let A = {Ai : i ∈ ω} be a denumerable family of non-empty finite sets, which, without
loss of generality, we assume that it is disjoint. Towards a proof by contradiction, assume that A has no infinite
subfamily with a choice function. Let ∞ be an element not in

⋃A, and also let X = ⋃A ∪ {∞}. Define a map
d : X × X → R by requiring

d(x, y) = d(y, x) =
⎧⎨
⎩

0, if x = y,
1

i+1 , if x �= y and x, y ∈ Ai ∪ {∞},
max{ 1

i+1 , 1
j+1 }, if x ∈ Ai , y ∈ A j , and i �= j.

It is easy to verify that d is a metric on X , (X, d) is compact, and Y = ⋃A is complete, since every Cauchy
sequence of elements of Y is eventually constant (since A has no partial choice function), thus converges to an
element of Y , hence Y is complete. However, Y is clearly not closed in X (since it does not contain its accumulation
point, namely ∞).

We are now ready to prove that, in ZF, a normed vector space X is finite-dimensional if and only if its closed
unit ball BX = {x ∈ X : ||x || ≤ 1} is compact.

Theorem 3.6 (ZF) A normed real vector space (X, || · ||) is finite-dimensional if and only if its closed unit
ball BX is compact.

P r o o f . Let (X, || · ||) be a normed vector space.
(→) Assume that X is finite-dimensional. Since BX is closed and bounded, it follows by Corollary 3.2 that BX

is compact.
(←) Assume that BX is compact. Toward a proof by contradiction, suppose X is not finite-dimensional. For

each x ∈ X and ε > 0, let N(x, ε) = {y ∈ X : ||y − x || < ε} then the set C = {N(x, 1
4 ) : x ∈ BX } is an open

cover of BX . By the compactness assumption, C has a finite subcover N(x1,
1
4 ), N(x2,

1
4 ), . . . , N(xk,

1
4 ) (of BX ).

Since X is not finite-dimensional, 〈x1, . . . , xk〉 is a proper subspace of X and, by Lemma 3.5(i), 〈x1, . . . , xk〉 is
closed in X . By Riesz’s Lemma 3.3, there is a z ∈ X such that ||z|| = 1 and inf{||z − y|| : y ∈ 〈x1, . . . , xk〉} ≥ 1

2 .
It follows that z ∈ BX and that z /∈ ⋃n

i=1 N(xi ,
1
4 ), contradicting the fact that {N(xi ,

1
4 ) : 1 ≤ i ≤ k} covers BX .

This completes the proof of (←) and of the theorem. �

We close this section with a ZF-proof of Mazur’s Lemma.

Lemma 3.7 (i) (Mazur; ZF) Let X be an infinite-dimensional normed space, let Y be a finite-dimensional
vector subspace of X, and let ε > 0. Then there is a unit vector x ∈ X\Y such that ||y|| ≤ (1+ ε)||y + αx ||
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for all y ∈ Y and all scalars α. Furthermore, the linear projection p : Y ⊕ 〈x〉 → Y defined by p(y + αx) = y,
where y ∈ Y and α ∈ R, is continuous and ||p|| ≤ 1+ ε.

(ii) (ZF) Let X be an infinite-dimensional normed space which is separable, let D be a countable dense subset
of the unit sphere SX = {x ∈ X : ||x || = 1}, let Y be a finite-dimensional vector subspace of X, and also let ε > 0.
Then there is an element x ∈ D\Y such that ||y|| ≤ (1+ ε)||y + αx || for all y ∈ Y and all scalars α.

P r o o f . (i) We first note that the proof of the following consequence of HB,

if W is a non-trivial normed vector space and x0 ∈ W\{0}, then there exists a bounded
linear functional f̃ : W → R such that || f̃ ||W ∗ = 1 and f̃ (x0) = ||x0||W ,

(∗)

does not require any choice if W is finite-dimensional (cf. the proof of [16, Theorem 3.2 & its Corollary, pp.
57–59]). Assume the hypotheses and without loss of generality assume that 0 < ε < 1. It suffices to show that
there exists some unit vector x ∈ X such that 1 ≤ (1+ ε)||y + αx || for all y ∈ Y with ||y|| = 1. Since Y is finite-
dimensional, it follows (from Theorem 3.6) that the closed unit ball BY of Y is compact. We may thus choose
unit vectors y1, . . . , yn in Y so that for each unit vector y ∈ Y , there is an i , 1 ≤ i ≤ n such that ||y − yi || < ε

2 .
Since X is infinite-dimensional, we may choose a subspace Z of X such that Y ⊆ Z , Z is finite-dimensional and
dim(Z) > dim(Y )+ n. For each i , 1 ≤ i ≤ n, we apply (∗) (the “finite dimension” version) to get a bounded
linear functional x∗i ∈ Z∗ such that ||x∗i || = 1 and x∗i (yi ) = 1.

Let {z1, z2, . . . , zk} be a basis for Z . Then an element z = a1z1 + a2z2 + · · · + ak zk of Z is in
⋂n

i=1 Ker(x∗i )
if and only if

a1x∗i (z1)+ a2x∗i (z2)+ · · · + ak x∗i (zk) = 0 (6)

for 1 ≤ i ≤ n. Thinking of this as a homogeneous linear system of n equations in the k unknowns a1, a2, . . . , ak ,
we know that the dimension of the solution space S (in Rk) is greater than or equal to k − n, and by our assumption
k − n = dim(Z)− n > dim(Y ). Since the map a1z1 + · · · + ak zk �→ (a1, . . . , ak) is an isomorphism from Z to
Rk which maps

⋂n
i=1 Ker(x∗i ) onto S we conclude that dim(

⋂n
i=1 Ker(x∗i )) > dim(Y ). We may therefore choose

z ∈ ⋂n
i=1 Ker(x∗i ) such that z /∈ Y . Letting x = 1

||z|| · z, we have that x ∈ ⋂n
i=1 Ker(x∗i ) and ||x || = 1. Now, if α

is any scalar and y ∈ Y satisfies ||y|| = 1, then choose 1 ≤ i ≤ n with ||y − yi || < ε
2 . We have that

||y + αx || ≥ ||yi + αx || − ||y − yi || ≥ ||yi + αx || − ε

2
≥ x∗i (yi + αx)− ε

2
= 1− ε

2
≥ 1

1+ ε
.

Therefore, 1 ≤ (1+ ε)||y + αx || for all unit vectors y ∈ Y , as desired.
For the second assertion of the lemma, firstly note that p is clearly linear, and secondly, for all y ∈ Y and α ∈ R

we have ||p(y + αx)|| = ||y|| ≤ (1+ ε)||y + αx ||, hence p is bounded, thus continuous, and ||p|| ≤ 1+ ε. This
completes the proof of (i).

(ii) Assume the hypotheses. Firstly, note that SX is separable without using any form of choice (if U = {un :
n ∈ ω} is a countable dense subset of X , then D = { 1

||un ||un : n ∈ ω} is a countable dense subset of SX ). Since Y c

is open (Y is closed being finite-dimensional—cf. Lemma 3.5(i)), it easily follows from the proof of part (i) that
the set

OY,ε = {x ∈ SX : (∀y ∈ Y )(∀α ∈ R)(||y|| ≤ (1+ ε)||y + αx ||)}
has a non-empty interior in SX . Thus, OY,ε ∩ D �= ∅, and any element x of the latter intersection satisfies the
conclusion of (ii). This completes the proof of (ii) and of the lemma. �

We end this section with a lemma which will be useful in the next section (and which is provable in ZF).

Lemma 3.8 If X is a vector space over R with a linearly ordered basis B, then for every linearly independent
subset C of X, |C | ≤ |ω × [B]<ω|. In particular, if B is well ordered and infinite then |C | ≤ |B|.

P r o o f . This is clear if B is finite so we assume that B is an infinite and (strictly) linearly ordered by ≺.
Assume that C is a linearly independent subset of X . Then we have that for all y ∈ C , there is is a unique pair
((a1, . . . , an), {b1, . . . , bn}) for which

1. n ∈ ω\{0},
2. (a1, . . . , an) ∈ (R\{0})n ,
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3. b1 ≺ · · · ≺ bn are in B, and
4. y = a1b1 + · · · + anbn .

For each Q = {b1, . . . , bn} ∈ [B]<ω (assuming b1 ≺ · · · ≺ bn) let

RQ = {(a1, . . . , an) : for all i such that 1 ≤ i ≤ n, ai �= 0

and there is a y ∈ C such that y = a1b1 + · · · + anbn}
and let

CQ = {y : ∃(a1, . . . , an) ∈ RQ such that y = a1b1 + · · · + anbn}.
Since CQ is a linearly independent set and CQ ⊆ 〈b1, . . . , bn〉 there are no more than n vectors in CQ . Further, there
is a definable one-to-one function from CQ onto RQ , namely hQ : y �→ (a1, . . . , an) (if y = a1b1 + · · · + anbn).
This means that RQ is finite, say |RQ | = k ∈ ω. Using the lexicographic ordering on RQ (as a subset of Rn) there
is a unique order preserving function gQ from RQ onto k. This gives us a definable one-to-one function gQ ◦ hQ

from CQ onto k. Each element of C is in exactly one CQ and therefore we obtain a one-to-one function from
C into ω × [B]<ω. (Namely y �→ (gQ(hQ(y)), Q) where Q is the unique element of [B]<ω for which y ∈ CQ .)
Thus, |C | ≤ |ω × [B]<ω| as required. �

4 On the existence of Hamel bases of cardinality < 2ℵ0 for
infinite-dimensional Banach spaces without choice

We begin with the proof that the statement “every infinite-dimensional Banach space has a linearly orderable
Hamel basis” is a strong choice axiom. Moreover, we show that if in the previous statement we replace “linearly
orderable” by well-orderable”, then the statement “every infinite-dimensional Banach space has a well-orderable
Hamel basis” is equivalent to the full AC.

Theorem 4.1 (i) “Every infinite-dimensional Banach space has a linearly orderable Hamel basis” implies
OP. Thus, “every infinite-dimensional Banach space has a linearly orderable Hamel basis” is not provable in ZF.

(ii) “Every infinite-dimensional Banach space has a well-orderable Hamel basis” implies AC.

P r o o f . (i) Assume the hypothesis and let I be an infinite set. Then the infinite-dimensional Banach space
�2(I ) has a linearly orderable Hamel basis B. It follows that ω × [B]<ω is linearly orderable (e.g., lexicographi-
cally). By Lemma 3.8 (letting C be the set of characteristic functions of singletons in I ) we conclude that C is
linearly orderable and hence I is linearly orderable. Therefore OP holds.

For the second assertion, any ZF-model in which OP is false, e.g., Pincus’ Model M4 in [6], satisfies (from
the first assertion) “there exists an infinite-dimensional Banach space with no linearly orderable Hamel basis”.

(ii) Assume the hypotheses and let I be an infinite set. Then the infinite-dimensional Banach space �2(I ) has a
well-orderable Hamel basis B. As in the proof of (i), we let C be the set of characteristic functions of singletons
in I and use Lemma 3.8 to conclude that C and therefore I is well orderable. �

As it will be apparent from the forthcoming results, in ZFC, no infinite-dimensional Banach space can have a
Hamel basis of cardinality < 2ℵ0 . However, the latter proposition can not be proved from the ZF axioms alone,
as we clarify in the subsequent theorem. Thus, some form of choice is necessarily needed for the proof. We shall
prove in the sequel that the weak choice principle ACR, equivalently “R can be well-ordered”, suffices for the
proof.

Theorem 4.2 It is relatively consistent with ZF that there exists an infinite-dimensional Banach space which
has a Hamel basis of cardinality < 2ℵ0 . In particular, “no infinite-dimensional Banach space has a Hamel basis
of cardinality < 2ℵ0 ” is false in the Basic Cohen Model (Model M1 in [6]), hence BPI does not imply the latter
statement in ZF.

P r o o f . Let A be the set of the countably many added generic reals. It is known (cf. [6, 8]) that A is
Dedekind-finite in M1, thus |A| < 2ℵ0 . Consider the Hilbert space �2(A). From the definition of �2(A) and the
fact that A is Dedekind-finite in M1, we have that for all f ∈ �2(A), the support s( f ) = {a ∈ A : f (a) �= 0} of
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f is finite. Thus, the set B = {χ{a} : a ∈ A}, where χ{a} is the characteristic function of {a}, is a Hamel basis for
�2(A). Clearly, |B| = |A| < 2ℵ0 , hence �2(A) is an infinite-dimensional Banach space having a Hamel basis of
cardinality less than 2ℵ0 . It follows that the statement “no infinite-dimensional Banach space has a Hamel basis
of cardinality < 2ℵ0 ” is false in the Basic Cohen Model. The last assertion of the theorem follows from the fact
that BPI is true in M1 (cf. [6]). This completes the proof of the theorem. �

Although Theorem 4.3 below can be obtained as an immediate consequence of the forthcoming Theorem
4.8(ii) (“In ZF, no infinite-dimensional Banach space has a well-orderable Hamel basis of cardinality < 2ℵ0 ”), we
shall include its proof here since, on one hand, it will provide us a useful tool (Claim 4.4) for the establishment
of Lemma 4.7 and Theorem 4.8 and, on the other hand, it is interesting in its own right. For the same reasons and
in order to exploit further ideas we shall also include the related Remark 4.5.

Theorem 4.3 (ZF) No infinite-dimensional Banach space has a denumerable Hamel basis.

P r o o f . By way of a contradiction, we assume that there exists an infinite-dimensional Banach space X with
a denumerable Hamel basis, say E = {en : n ∈ ω}. �

Claim 4.4 X is a separable space.

P r o o f . Let D = {∑n
k=0 qkek : n ∈ ω, qk ∈ Q}. It is clear that D is denumerable. We assert that D is dense in

X . Fix x ∈ X and ε > 0. Since E is a Hamel basis for X , there exist a0, a1, . . . , am ∈ R such that x = ∑m
i=0 ai ei .

For each i = 0, 1, . . . , m let qi ∈ Q such that |qi − ai | < ε
2(m+1)||ei || , and let y = ∑m

i=0 qi ei . Then y ∈ D and we
have that

||x − y|| = ||
m∑

i=0

(ai − qi )ei || ≤
m∑

i=0

|ai − qi | · ||ei || < (m + 1) · ε

2(m + 1)
= ε

2
< ε.

Therefore, the open ball B(x, ε) meets D in a non-empty set and D is dense in X as required. �

Since X is separable, it is also second countable, and since X is complete, we have that X is Baire without
invoking any form of choice (since all that is needed in the usual proof in order to have X effectively Baire is a
well-orderable base for its topology). For each n ∈ ω, let Yn be the linear span of {e0, e1, . . . , en}. By Lemma 3.5
we have that for each n ∈ ω, Yn is a closed nowhere dense set. Moreover, X = ⋃{Yn : n ∈ ω}. This contradicts
the fact that X is Baire and completes the proof of the theorem.

Remark 4.5 It should be noted here that the statement “no infinite-dimensional Banach space has a denumerable
Hamel basis” has occupied the interest of some researchers in the past. In fact, there are witnesses in the literature
that vividly show the effort to prove the above statement casting off the Baire Category Theorem BCT. One such
luminous example is a proof by Bauer and Benner (cf. [2]) in 1971. The authors, in [2], mention “This paper
presents an elementary proof which does not use the category theory. ... Textbooks either omit the result or defer
it until after the category theorem is proved.”

The proof by Bauer and Benner uses Riesz’s ZF-result (cf. Lemma 3.3) reiteratively within an inductive
argument in order for a suitable sequence (xn)n∈ω\{0} (of elements of an infinite-dimensional Banach space X ) to
be constructed, and as the authors assert, it provides a path which avoids BCT. However, the avoidance of BCT
in their proof is deceptive. This is because, although the result of BCT does not seem to be used anywhere in
the proof, the authors implicitly use the principle of dependent choices DC in order to construct the sequence
(xn)n∈ω\{0} in the first paragraph of their proof. Since DC is logically equivalent to BCT, it is apparent that BCT
has been used in the proof. However, it is worth noting that Bauer and Benner’s proof can indeed be adjusted in
order to truly avoid BCT. Below, we provide in detail the argument which fairly modifies the one in [2] in order
to become choice free.

Toward a proof by contradiction, we assume that there exists an infinite-dimensional Banach space X with a
denumerable Hamel basis, say E = {en : n ∈ ω}. For each n ∈ ω, let xn = 1

||en || en . It is clear that F = {xn : n ∈ ω}
is a Hamel basis for X and that ||xn|| = 1 for all n ∈ ω. For each n ∈ ω, let Yn = 〈x0, . . . , xn〉 and let an+1 =
inf{||xn+1 − y|| : y ∈ Yn}. Note that for all n ∈ ω, an+1 ≤ ||xn+1|| = 1 and an+1 > 0, otherwise d(xn+1, Yn) = 0,
hence xn+1 ∈ Yn = Yn , a contradiction since F is a Hamel basis for X . (Recall here the ZF-result of Lemma

3.5(i).) Let b0 = b1 = a1

3
, and for i ∈ ω\{0, 1}, let bi = a1 · . . . · ai−1

3i−1
. Since the series

∑∞
i=0 bi converges, it can
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be easily verified that the sequence of the partial sums of the series
∑∞

i=0 bi xi is Cauchy, thus converges in X . Let
y = ∑∞

i=0 bi xi be the sum of the series
∑∞

i=0 bi xi in X . Since F is a Hamel basis for X , there exist n ∈ ω\{0} and
scalars λ0, λ1, . . . , λn ∈ R so that y = ∑n

i=0 λi xi (some of the λi ’s may be zero). Thus,

n∑
i=0

(λi − bi )xi − bn+1xn+1 −
∞∑

i=n+2

bi xi = 0,

and consequently

||
n∑

i=0

(λi − bi )xi − bn+1xn+1|| = ||
∞∑

i=n+2

bi xi ||,

or

a1 · . . . · an

3n
||

n∑
i=0

3n

a1 · . . . · an
(λi − bi )xi − xn+1|| = ||

∞∑
i=n+2

bi xi ||.

Since
∑n

i=0

3n

a1 · . . . · an
(λi − bi )xi ∈ Yn , it follows that

||
n∑

i=0

3n

a1 · . . . · an
(λi − bi )xi − xn+1|| ≥ an+1,

hence

a1 · . . . · an

3n
||

n∑
i=0

3n

a1 · . . . · an
(λi − bi )xi − xn+1|| ≥ a1 · . . . · an · an+1

3n
.

Letting z = a1 · . . . · an · an+1

3n
, we have that z > 0 and

z ≤ ||
∞∑

i=n+2

bi xi || ≤
∞∑

i=n+2

bi ||xi || =
∞∑

i=n+2

bi ≤ z

(
1

3
+ 1

32
+ 1

33
+ · · ·

)
= z

2

(recall that 0 < an ≤ 1 for all n ∈ ω\{0}). Thus, we have reached a contradiction, finishing the proof.
Another proof of “no infinite-dimensional Banach space has a denumerable Hamel basis” can also be derived

from an argument by Lacey in his paper [11] from 1973, where he provides an elementary ZFC-proof that the
cardinality of a Hamel basis of an infinite-dimensional separable Banach space is 2ℵ0 . We shall use ideas from
[11] in the proof of the forthcoming Theorem 4.8.

In striking contrast with Theorem 4.3, the statement “no infinite-dimensional Banach space has a Hamel basis
which can be written as a denumerable union of finite sets” is unprovable in set theory without the Axiom of
Choice. In fact, it turns out that the aforementioned statement is equivalent to a well-known weak choice principle,
namely ACℵ0

fin. Indeed, we have the following result.

Theorem 4.6 The following are equivalent in ZF:

1. ACℵ0

fin.
2. No infinite-dimensional Banach space has a Hamel basis which can be written as a denumerable union of

finite sets.

P r o o f . (1) → (2) Assume ACℵ0

fin. If there exists an infinite-dimensional Banach space X with a Hamel
basis B that can be written as a denumerable union of finite sets, then by our assumption B is denumerable. This
contradicts the result of Theorem 4.3 that no infinite-dimensional Banach space has a denumerable Hamel basis.

(2) → (1) Assume (2). Towards a proof by contradiction assume that there exists a denumerable disjoint
family A = {An : n ∈ ω} of non-empty finite sets, having no partial choice function. Consider the Hilbert space
�2(A), where A = ⋃A. Then for every f ∈ �2(A), s( f ) = {x ∈ A : f (x) �= 0} (the support of f ) is finite. Thus,
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B = ⋃{Bn : n ∈ ω}, where Bn = {χ{a} : a ∈ An}, is a Hamel basis for �2(A). This is a contradiction, finishing
the proof of the implication and of the theorem. �

The next natural step is to replace “denumerable Hamel basis” in the statement “no infinite-dimensional
Banach space has a denumerable Hamel basis” by “well-orderable Hamel basis of cardinality < 2ℵ0 ”. As it will
be shown in Theorem 4.8(ii), the resulting statement is still a theorem of ZF, but (surprisingly) the argument for
the establishment of the result becomes much more involved than the one given for Theorem 4.3. In Theorem 4.8,
we also establish that no infinite-dimensional Banach space has a Hamel basis of cardinality < 2ℵ0 , presenting
two proofs both of which use ideas from [11]. However, the arguments used in [11] are conducted within ZFC,
whereas our proofs are carried out in the strictly weaker axiomatic system ZF+ “R can be well-ordered”.

For use in ‘Proof A’ of the subsequent Theorem 4.8(i), we shall first establish a lemma (Lemma 4.7 below).
The reader will soon realize that the certain sequence (xn)n∈ω of elements of an infinite-dimensional normed
space X which is constructed in the proof of the lemma is apparently related to the notion of a a Schauder basis
(or simply a basis) (xn)n∈ω in a Banach space X . Since Mazur’s Lemma (Lemma 3.7) shall play a key role in
the proof of Lemma 4.7, we recall here some known facts concerning Schauder bases so that the reader obtains a
clear picture of the relation of the result of Lemma 4.7 with the aforementioned notion. So, suppose that (xn)n∈ω

is a basis in a Banach space X , and for each vector x ∈ X , let x = ∑∞
n=0 an xn be its unique series representation

with respect to the basis (xn)n∈ω. The nth-coordinate functional c∗n of the basis (xn)n∈ω is the linear functional
defined by c∗n(x) = c∗n(

∑∞
n=0 an xn) = an . (Note that since (xn)n∈ω is a Schauder basis, it follows that (xn)n∈ω is

linearly independent, so for all elements n, m ∈ ω, we have c∗n(xm) = 1 if n = m and c∗n(xm) = 0 if n �= m.)
For every n ∈ ω, the projection Pn : X → X is defined by

Pn(x) =
n∑

i=0

ai xi =
n∑

i=0

c∗i (x)xi .

It is known (cf. [1, Theorem 1.37] or [13, Proposition 1.a.2]) that if X is a Banach space (or more generally,
a normed vector space) with a basis (xn)n∈ω and for each vector x ∈ X , x = ∑∞

n=0 an xn =
∑∞

n=0 c∗n(x)xn is its
(unique) series representation with respect to the basis (xn)n∈ω, then

(i) the function ||| · ||| : X → R, defined by |||x ||| = supn ||
∑n

i=0 ai xi || is a norm that is equivalent to the
norm of X ,

(ii) each projection Pn is continuous and supn ||Pn|| < ∞, and
(iii) each coordinate functional c∗n is continuous and ||c∗n|| ≤ 2 supn ||Pn ||

||xn || . (If ||xn|| = 1 for all n ∈ ω, then
supn ||c∗n|| ≤ 2 supn ||Pn|| < ∞.)

For necessary and sufficient conditions for a sequence (xn)n∈ω in a Banach space X to be a Schauder basis, the
reader is referred to [1, Theorem 1.41] or [13, Proposition 1.a.3].

Lemma 4.7 Assume that every Dedekind-finite set of reals is finite. Let X be an infinite-dimensional normed
space with a Hamel basis B of cardinality ≤ 2ℵ0 . Then there is a sequence (xn)n∈ω of unit vectors of X such that
for every sequence (an)n∈ω of reals if the series

∑
n∈ω an xn converges to 0 (= the additive identity of X), then

an = 0 for every n ∈ ω.

P r o o f . Assume the hypotheses. Since |B| ≤ 2ℵ0 and B is infinite, let (un)n∈ω be an injective sequence
of elements of B, and also let W = 〈{un : n ∈ ω}〉. Then W is an infinite-dimensional normed space which is
separable, since it has a denumerable Hamel basis, namely {un : n ∈ ω} (recall Claim 4.4 of the proof of Theorem
4.3). Via mathematical induction and using Mazur’s Lemma (Lemma 3.7) we shall construct the required sequence
of unit vectors of X .

Let D = {dn : n ∈ ω} be a countable dense subset of the unit sphere SW of W . Let ε > 0 and also let (εn)n∈ω\{0}
be a sequence of positive real numbers such that

∏∞
n=1(1+ εn) ≤ 1+ ε.

For the first step of the induction, we let x0 = d0.
For the inductive step, assume that we have defined vectors x0, x1, . . . , xn in D such that for all 0 < i <

n + 1, ||z|| ≤ (1+ εi )||z + αxi || for all scalars α and all z ∈ 〈x0, x1, . . . , xi−1〉. For i = 1, . . . , n, consider the
corresponding linear projections pi : 〈x0, . . . , xi−1〉 ⊕ 〈xi 〉 → 〈x0, . . . , xi−1〉. From Lemma 3.7(i), we have that
for every i with 0 < i < n + 1, pi is continuous and ||pi || ≤ 1+ εi .
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Now, in view of Lemma 3.7(ii), we may let xn+1 be the least element of D\〈x0, . . . , xn〉 (in the prescribed
enumeration of the elements of D given above) such that ||z|| ≤ (1+ εn+1)||z + αxn+1|| for all scalars α and
all z ∈ 〈x0, x1, . . . , xn〉. Let pn+1 : 〈x0, . . . , xn〉 ⊕ 〈xn+1〉 → 〈x0, . . . , xn〉 be the corresponding linear projection
with ||pn+1|| ≤ 1+ εn+1. This completes the inductive step.

Let V = 〈{xn : n ∈ ω}〉. By the construction of (xn)n∈ω, we have that {xn : n ∈ ω} is a Hamel basis for V ,
thus for every v ∈ V there is a unique sequence (an)n∈ω of real numbers, which is eventually zero and such that
v = ∑

n∈ω an xn . Using the fact that the linear projections pn are bounded, we shall show that the projections
Pn : V → V are also bounded, thus continuous. Indeed, let n ∈ ω, let x ∈ V \{0}, and also let x = ∑∞

n=0 an xn

be its unique representation (with respect to (xn)n∈ω), where (an)n∈ω is a sequence of real numbers, which is
eventually zero. Let k ∈ ω be the largest integer such that ak �= 0.

If n ≥ k, then Pn(x) = x (since am = 0 for all integers m > k), thus ||Pn(x)|| = ||x || ≤ (1+ ε)||x ||.
If n < k, then we have

||Pn(x)|| = ||pn+1

(
n+1∑
i=0

ai xi

)
||

≤ (1+ εn+1)||pn+2

(
n+2∑
i=0

ai xi

)
||

≤ · · · ≤ (
k−1∏

i=n+1

(1+ εi ))||pk(x)||

≤ (
k∏

i=n+1

(1+ εi ))||x ||

≤ (
k∏

i=1

(1+ εi ))||x || ≤ (1+ ε)||x ||.

Therefore, the linear projection Pn is bounded with ||Pn|| ≤ 1+ ε, thus Pn is continuous as required.
In order to prove that (xn)n∈ω is a sequence which satisfies the conclusion of the lemma, we show next that for

each n ∈ ω\{0}, the coordinate functional c∗n : V → R is continuous. To this end, fix n ∈ ω\{0}. Let x ∈ V and
also let x = ∑∞

i=0 ai xi =
∑∞

i=0 c∗i (x)xi be its unique representation, where (ai )i∈ω is a sequence of real numbers,
which is eventually zero. We have

|c∗n(x)| = |an| = ||an xn|| = ||Pn(x)− Pn−1(x)|| ≤ ||Pn(x)|| + ||Pn−1(x)|| ≤ 2(1+ ε)||x ||.
Thus, c∗n is continuous as required. Now, we show that the constructed sequence (xn)n∈ω is the required one.
Indeed, let (an)n∈ω be a sequence of real numbers such that

∑
n∈ω an xn = 0. Let (sn)n∈ω be the sequence of partial

sums of the series
∑

n∈ω an xn . Note that sn =
∑n

i=0 ai xi ∈ V for all n ∈ ω. Then for every n ∈ ω\{0}, we have
c∗n(sm) = an for all integers m ≥ n. Since c∗n is a continuous linear functional, we conclude that for every n ∈ ω,
the sequence (c∗n(sm))m∈ω converges to 0, thus an = 0 as required. This completes the proof of the lemma. �

Theorem 4.8 (i) “R can be well-ordered” implies “No infinite-dimensional Banach space has a Hamel basis
of cardinality < 2ℵ0 ”.

(ii) (ZF) No infinite-dimensional Banach space has a well-orderable Hamel basis of cardinality < 2ℵ0 .

P r o o f . We first note that (i) follows from (ii). In order to prove (ii) assume towards a proof by contradiction
that there exists an infinite-dimensional Banach space X with a well-orderable Hamel basis B such that |B| < 2ℵ0 .
We obtain a contradiction to Lemma 3.8 by constructing a linearly independent subset Y of X of cardinality 2ℵ0 .

P r o o f A. By Lemma 4.7, let (xn)n∈ω be a sequence of unit vectors in X such that for every sequence (an)n∈ω

of reals if the series
∑

n∈ω an xn converges to 0, then an = 0 for every n ∈ ω. (Note that the proof of Lemma 4.7
only requires the hypothesis “Every Dedekind-finite set of reals is finite” in order to choose a countably infinite
subset of B. In the current proof, this follows from our assumptions that B is infinite and well-orderable.)
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Let A be an almost disjoint family of denumerable subsets of ω of cardinality 2ℵ0 . (Note that such a family
exists without invoking any choice principle; for each irrational number a pick a sequence of rational numbers
converging to a. The family of these sequences is a continuum sized almost disjoint family of (necessarily
denumerable) subsets of Q.) Pick any real number c in the open interval (0, 1). For each A ∈ A consider the
following element of X : tA =

∑
n∈A cn xn . We observe the following:

1. For all A ∈ A, the series
∑

n∈A cn xn converges to an element of X . Indeed, the sequence of partial sums
of the series

∑
n∈A cn xn is a Cauchy sequence in X , since ||xn|| = 1 for all n ∈ ω and the geometric series∑

n∈ω cn converges (since c ∈ (0, 1)). Since X is a Banach space, it follows that
∑

n∈A cn xn converges to
an (unique) element in X , which we call tA.

2. The set Y = {tA : A ∈ A} is a linearly independent subset of X : Let {A1, . . . , An} be an n-sized subset
of A and let a1, . . . , an ∈ R such that a1tA1 + a2tA2 + . . .+ antAn = 0. Since A is an almost disjoint
family of infinite sets, we must have that for each m ∈ {1, . . . , n}, Am\

⋃
k∈{1,...,n}\{m} Ak is infinite,

thus for each m ∈ {1, . . . , n} there is a jm ∈ Am\
⋃

k∈{1,...,n}\{m} Ak , consequently amc jm x jm is a term in
a1tA1 + a2tA2 + . . .+ antAn . Thus, by the property of (xn)n∈ω and the fact that c j �= 0 for all j ∈ ω, we
infer that am = 0 for all m ∈ {1, . . . , n}.

It follows that |Y | = 2ℵ0 (since for all A, B ∈ A with A �= B we have that tA �= tB). The set Y is the required
one for obtaining a contradiction to Lemma 3.8.

This completes proof A. �

P r o o f B. Assume that R can be well-ordered and again, towards a proof by contradiction, assume that
there exists an infinite-dimensional Banach space X with a Hamel basis B such that |B| < 2ℵ0 . Since |X | ≤
|R<ω × [B]<ω| (where R<ω is the set of all finite sequences of real numbers, cf. also the proof of Lemma 3.8) and
|R<ω × [B]<ω| = |R× B| = 2ℵ0 (note that |R<ω| = 2ℵ0 in ZF, and |[B]<ω| = |B| since B is well-orderable), we
have that X is well-orderable, so let � be a well-ordering of X .

We shall prove the existence of a sequence (xn)n∈ω of unit vectors in X which satisfies the conclusion of
Lemma 4.7 without relying on Mazur’s Lemma. Then the rest of proof B proceeds as in proof A.

To begin with, we first note that since X is well-ordered, we may effectively define a non-zero element
f0 ∈ X∗. As f0 is a bounded linear functional, it follows that f0 is continuous without using any form of choice
(we recall that ‘bounded’ means | f0(x)| ≤ || f0|| · ||x || for all x ∈ X , which easily implies continuity). Thus, the
kernel Ker( f0) of f0 is a closed subspace of X (since Ker( f0) = f −1

0 ({0})). Pick the least (with respect to �)
element y0 ∈ X such that f0(y0) �= 0, i.e., y0 /∈ Ker( f0). Then X = Ker( f0)⊕ 〈y0〉 (i.e., X = Ker( f0)+ 〈y0〉
and Ker( f0) ∩ 〈y0〉 = {0})—cf. [7, Theorem 3.16]—and so Ker( f0) is infinite-dimensional. Let x0 = 1

||y0|| y0, then
||x0|| = 1 and x0 �∈ Ker( f0).

Construct now a non-zero element f1 ∈ (Ker( f0))∗. Pick the least y1 ∈ Ker( f0) such that f1(y1) �= 0. Then
Ker( f0) = Ker( f1)⊕ 〈y1〉, Ker( f1) is closed in Ker( f0), thus closed in X , and Ker( f1) is infinite-dimensional.
Put x1 = 1

||y1|| y1. Then ||x1|| = 1 and x1 ∈ Ker( f0)\Ker( f1).
Via mathematical induction we may easily construct a sequence (xn)n∈ω of unit vectors of X , a sequence

of bounded linear functionals ( fn)n∈ω such that f0 ∈ X∗, and for n > 0, fn is a bounded linear functional on
Ker( fn−1), hence Ker( fn) ⊆ Ker( fn−1) for all positive integers n, and xn ∈ Ker( fn−1)\Ker( fn).

It follows that the constructed sequence (xn)n∈ω is the required one. Indeed, let (an)n∈ω be any sequence of
reals such that

∑
n∈ω an xn = 0. We argue by contradiction that an = 0 for all n ∈ ω. Let n0 be the least natural

number such that an0 �= 0. Then
∑

n≥n0
an xn = 0, so an0 xn0 is the limit of the series

∑
n>n0

−(an xn), and therefore

the sequence of partial sums (
∑k

n=n0+1 an xn)k>n0 converges to −an0 xn0 . However, due to the above construction

of the sequence (xn), we have that each term of the sequence (
∑k

n=n0+1 an xn)k>n0 is an element of Ker( fn0)
which is closed in X , thus−an0 xn0 ∈ Ker( fn0), and consequently xn0 ∈ Ker( fn0). But this is a contradiction, since
xn �∈ Ker( fn) for all n ∈ ω. �

From Lemma 4.7 and Theorem 4.8, we easily obtain the following.

Corollary 4.9 (i) (ZFA) MC implies “no infinite-dimensional Banach space has a Hamel basis of cardinality
< 2ℵ0 ”.
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(ii) “No infinite-dimensional Banach space has a Hamel basis of cardinality < 2ℵ0 ” is true in every Fraenkel-
Mostowski permutation model of ZFA.

(iii) Assume that every Dedekind-finite set of reals is finite. If X is an infinite-dimensional Banach space with
a Hamel basis B of cardinality ≤ 2ℵ0 , then X has a linearly independent subset of cardinality 2ℵ0 .

P r o o f . (i) This follows immediately from the fact that MC implies “R can be well-ordered” and Theorem
4.8.

(ii) This follows from Theorem 4.8 and the fact that R is well-orderable in every permutation model of ZFA
(cf. [6]).

(iii) Assume the hypothesis. Let X be an infinite Banach space with a Hamel basis B such that |B| ≤ 2ℵ0 . By
Lemma 4.7, there exists a sequence (xn)n∈ω of unit vectors of X such that for every sequence (an)n∈ω of reals if
the series

∑
n∈ω an xn converges to 0 (= the additive identity of X ), then an = 0 for every n ∈ ω. Then, from proof

A of Theorem 4.8, we have that there exists a linearly independent subset Y of X with cardinality 2ℵ0 (cf. the set
Y = {tA : A ∈ A} in the latter proof). �

We show next that the Hahn-Banach Theorem HB and “no infinite dimensional Banach space has a Hamel
basis of cardinality < 2ℵ0 ” are independent of each other in ZF. Moreover, we shall obtain a sharper result than
“no infinite-dimensional Banach space has a Hamel basis of cardinality < 2ℵ0 ” does not imply HB in ZF, namely
we shall construct a ZF-model N such that N |= DC+ ACR +¬HB, hence the desired independence result will
then follow from Theorem 4.8. We note that the status of the implication “DC+ ACR →HB” is stated as unknown
in [6], thus our independence result fills the gap in [6].

Theorem 4.10 (i) HB does not imply “no infinite-dimensional Banach space has a Hamel basis of cardinality
< 2ℵ0 ” in ZF.

(ii) DC+ ACR does not imply HB in ZF. Thus, “no infinite-dimensional Banach space has a Hamel basis of
cardinality < 2ℵ0 ” does not imply HB in ZF either.

P r o o f . (i) In the Basic Cohen Model M1 in [6], BPI is true, thus HB is also true. The result now follows
from the proof of Theorem 4.2 that in M1 the infinite-dimensional Banach space �2(A) (where A is the set of the
countably many added Cohen reals) has a Hamel basis of cardinality < 2ℵ0 .

(ii) We start with a countable transitive model M of ZFC+ CH. The partially ordered set of forcing conditions
is the set P = Fn(ℵ1 × ℵ1, 2,ℵ1), i.e., the set of all partial functions p from ℵ1 × ℵ1 into 2 such that |p| < ℵ1,
partially ordered by reverse inclusion, i.e., p ≤ q if and only if p ⊇ q. Let G be a P-generic set over M and let
M [G] be the corresponding extension model of M .

Every set X ⊆ ℵ1 × ℵ1 induces an order automorphism πX of (P,≤) via

πX (p)(u, v) =
{

p(u, v) if (u, v) /∈ X,

1− p(u, v) if (u, v) ∈ X,

for any p ∈ P . Let G be the group generated by the sets G1 = {πX : X ⊆ ℵ1 × ℵ1} and G2 = {π ∈ Sym(ℵ1 ×
ℵ1) : π moves only elements in finitely many columns}, thus if π ∈ G2 then π is a a one-to-one mapping
from {n} × ℵ1 onto {m} × ℵ1 for finitely many ordinals n, m, and π fixes all the other columns pointwise. Every
permutation π ∈ G2 induces an order automorphism of (P,≤) via π(p)(π(n, m)) = p(n, m). For every countable
set E ⊆ ℵ1 × ℵ1 let fix(E) be the subgroup of G generated by {πX : X ⊆ ℵ1 × ℵ1 and X ∩ (dom(E)× ℵ1) =
∅} ∪ {π ∈ G2 : π(e) = e for all e ∈ E}. Let F be the normal filter generated by {fix(E) : E ∈ [ℵ1 × ℵ1]<ℵ1}.
Let N be the symmetric extension model of M determined by G and F .

For each n ∈ ℵ1, let (in M [G]) an = {m ∈ ℵ1 : ∃p ∈ G, p(n, m) = 1} and δ(an) = {an�x : x ∈ [ℵ1]<ℵ1} (i.e.,
δ(an) is the ∼ equivalence class of an where ∼ is the equivalence relation on ℘(ℵ1) defined by x ∼ y if and only
if |x�y| < ℵ1). Both an and δ(an) (as well as δ(ℵ1\an)) have canonical names an and δ(an) (δ(ℵ1\an)) which
are hereditarily symmetric, so an and δ(an) (as well as δ(ℵ1\an)) belong to N .

1. Since ℵ1 is a regular cardinal number, it follows by [10, Lemma 6.13, p. 214] that (P,≤) is a ℵ1-closed
poset, thus forcing with P adds no new reals (cf. [10, Theorem 6.14, p. 214]), but it adds new sets of reals.
Thus, CH is true in N and consequently R is well-orderable in the model N . (Note that this implies the
existence of a free ultrafilter on ω, hence on R, and thus implies the existence of a 2-valued measure on
℘(ω).)
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2. Since ℵ1 is a regular cardinal number and supports are countable, we also have that DC is true in N (cf.
[8, Lemma 8.5, p. 124]).

Now, it is known (cf. [6]) that HB is equivalent to “for every proper ideal I of elements of a Boolean algebra
B, there exists a finitely additive real-valued measure m on B such that m(x) = 0 for all x ∈ I” (this is [6, Form
[52 B]]). So let I be the ideal of all countable subsets of ℵ1. Towards a proof by contradiction assume that there is
a finitely additive real-valued measure m on ℘(ℵ1) such that m(x) = 0 for all x ∈ I. Let ṁ be a HS-name for m
with support some countable set E ⊆ ℵ1 × ℵ1. We shall show that for every n ∈ ℵ1\ dom(E), m(an) = m(ℵ1\an)
and thus by the finite additivity of m we shall have that m(an) = 1

2 for all n ∈ ℵ1\ dom(E) (for m(ℵ1) = 1).
So fix n ∈ ℵ1\ dom(E) and assume that m(an) = r for some non-negative real r . Then there exists p ∈ G such
that

p � ṁ(an) = ř , (7)

where an is the (HS-) canonical name of an . Since |p| < ℵ1, there exists an ordinal k0 ∈ ℵ1 such that for all k ≥ k0,
(n, k) /∈ dom(p). Let X = {(n, k) : k ∈ ℵ1, k ≥ k0}. Since X ∩ (dom(E)× ℵ1) = ∅ we have that πX ∈ fix(E),
thus πX (ṁ) = ṁ. Furthermore, πX (p) = p. Thus, from formula (7) it follows that

p � ṁ(πX (an)) = ř . (8)

Since p ∈ G we have, by formula (8), that m((πX (an))G) = r , thus m(an) = m((πX (an))G). It is fairly straight-
forward now to verify that (πX (an))G ∈ δ(ℵ1\an), so since m vanishes on countable subsets of ℵ1 it follows
that m((πX (an))G) = m(ℵ1\an) (let W = (ℵ1\an) ∩ (πX (an))G , then m(ℵ1\an) = m((ℵ1\an)\W )+ m(W ) =
0+ m(W ) = m((πX (an))G\W )+ m(W ) = m((πX (an))G)). Therefore m(an) = m(ℵ1\an). Furthermore, note
that an ∩ (πX (an))G ⊆ k0, thus an ∩ (πX (an))G is countable.

Therefore, from the above argument we have that there is a forcing condition q ∈ G such that

q � (ṁ is a measure on ˙℘(ℵ1) vanishing on countable sets)∧(ṁ(an) = 1̌
2 )∧(ṁ(πX (an)) = 1̌

2 ). (9)

Now, let n′ ∈ ℵ1\(dom(E) ∪ {n} ∪ dom(E ′)), where E ′ is a support of ˙℘(ℵ1). It is fairly easy to find a
permutation ψ ∈ G2 which fixes E ∪ E ′ pointwise (in particular, ψ fixes each column {e} × ℵ1, e ∈ dom(E) ∪
dom(E ′), pointwise), thus fixes ṁ, and ψ maps the names an and πX (an) up to a countable set onto disjoint
subsets A and B of an′ . Clearly, A and B are names (cf. [10, Definition 2.5, p. 188]) and furthermore they are
hereditarily symmetric.

From formula (9) we may conclude that

ψ(q) � (ṁ is a measure on ˙℘(ℵ1) vanishing on countable sets) ∧ (ṁ(A) = 1̌
2 ) ∧ (ṁ(B) = 1̌

2 ). (10)

From (10) we obtain a contradiction: Indeed, let H be a P-generic filter over M such that ψ(q) ∈ H . Then in M [H ]
we have that ṁ H is a measure on ˙℘(ℵ1)H vanishing on countable subsets of ℵ1, ṁ H ((an′)H ) = 1

2 (exactly as in the
argument that for all n ∈ ℵ1\ dom(E), m(an) = 1

2 in M [G]) ṁ H (AH ) = 1
2 , ṁ H (BH ) = 1

2 , |AH ∩ BH | ≤ ℵ0, and
AH ∪ BH ⊆ (an′)H . Let T = AH ∩ BH . By the finite additivity of the measure ṁ H and the fact that ṁ H (T ) = 0
we have that ṁ H (AH\T ) = 1

2 and ṁ H (BH\T ) = 1
2 . Therefore, we have

1 = ṁ H (AH\T )+ ṁ H (BH\T ) = ṁ H (AH�BH ) ≤ ṁ H ((an′)H ) = 1

2
,

(the last inequality follows from the monotonicity of the measure, i.e., U ⊆ V implies ṁ H (U) ≤ ṁ H (V );
ṁ H (V ) = ṁ H ((V \U) ∪U) = ṁ H (V \U)+ ṁ H (U) ≥ ṁ H (U)), and we have reached a contradiction.

Thus, in N , there is no finitely additive real-valued measure m on ℘(ℵ1) such that m(x) = 0 for every countable
subset x ⊂ ℵ1, and HB is false in N as required.

The proof of (ii), as well as of the theorem, is complete. �
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5 Infinite-dimensional Banach spaces may be written as denumerable
unions of closed proper subspaces or finite-dimensional subspaces in
the lack of AC

In this section, we investigate the deductive strength of the statements

a) no infinite-dimensional Banach space can be written as a denumerable union of closed proper subspaces,
b) no infinite-dimensional Banach space can be written as a denumerable union of finite-dimensional sub-

spaces.

It is clear that BCT → (a) → (b). From the subsequent results, we shall derive that (b), hence (a), is not
provable in ZF.

Theorem 5.1 Each of the following statements implies the one beneath it:

(i) DC;
(ii) no infinite-dimensional Banach space can be written as a denumerable union of closed proper subspaces;

(iii) ACℵ0 ;
(iv) no infinite-dimensional Banach space can be written as a denumerable union of finite-dimensional sub-

spaces;
(v) ACℵ0

fin.

P r o o f . (i) → (ii) This readily follows from the fact that DC is (in ZF) equivalent to BCT and from Lemma
3.5(ii).

(ii)→ (iii) Assume that no infinite-dimensional Banach space can be written as a denumerable union of closed
proper subspaces. Since ACℵ0 is equivalent to its partial version, it suffices to show that every denumerable family
of non-empty sets has a partial choice function. Assume on the contrary that there exists a denumerable family
A = {Ai : i ∈ ω}, where Ai �= ∅ for all i ∈ ω, without a partial choice function.

Consider the Hilbert space H = �2(A), where A = ⋃A. Since A does not have a partial choice function, it
follows that for every f ∈ H , the support s( f ) of f is contained in some finite union of Ai ’s. Thus, H = ⋃{Hn :
n ∈ ω} where Hn = �2(A0 ∪ A1 ∪ . . . ∪ An) (with the intended meaning that Hn consists of all functions f ∈ H
such that for all m > n and all x ∈ Am , f (x) = 0). Then for all n ∈ ω, Hn is a proper subspace of H , and also,
H1 � H2 � H3 � . . .. We assert that Hn is closed in H for every n ∈ ω. To prove our assertion, we fix a positive
integer n and we also let f ∈ H\Hn . We look for a positive real r such that the open ball B( f, r) centered at f and
of radius r , does not meet Hn . Since f /∈ Hn (= �2(A0 ∪ A1 ∪ . . . ∪ An)), there exists a natural number m > n
and an element x ∈ Am such that f (x) �= 0. Let ε be any positive real such that ε < ( f (x))2. Then the open ball
B( f, r) = {g ∈ H : || f − g|| < r}, where r = √

ε, is such that B( f, r) ∩ Hn = ∅. Assume the contrary and let
g ∈ B( f, r) ∩ Hn . Then we have that g(x) = 0 and

|| f − g|| =
√

(
∑

y∈(s( f )\{x})∪s(g)

( f (y)− g(y))2)+ ( f (x))2 <
√

ε,

or equivalently,

(
∑

y∈(s( f )\{x})∪s(g)

( f (y)− g(y))2)+ ( f (x))2 < ε.

Since ε < ( f (x))2, the last inequality obviously yields a contradiction. Therefore, B( f, r) ∩ Hn = ∅ and Hn is
closed in H as required. Hence, the infinite-dimensional Banach space H can be written as a denumerable union
of closed proper subspaces, contradicting our assumption. It follows that the family A has a partial choice function
and ACℵ0 holds, finishing the proof.

(iii) → (iv) Assume ACℵ0 , and towards a proof by contradiction, assume that there is an infinite-dimensional
Banach space X which can be written as a denumerable union

⋃{Xn : n ∈ ω}, where each Xn is a finite-
dimensional subspace of X . By ACℵ0 , pick for each n ∈ ω, a finite subset Yn of Xn such that Xn = 〈Yn〉. It is clear
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that Y = ⋃{Yn : n ∈ ω} spans X and since X is infinite-dimensional, it follows that Y is infinite, and in particular,
by ACℵ0 , it is denumerable. Without loss of generality we may also assume that 0 /∈ Y . Now, there are two ways
to proceed with the proof. We present them both.

P r o o f 1. Since X is spanned by the denumerable set Y , it follows that X is separable (this can be shown
exactly as in the proof of Claim 4.4 of the proof of Theorem 4.3). Thus, X is Baire, without using any form of
choice, and we have reached a contradiction, since X is a denumerable union of the closed nowhere dense sets
Xn (Xn is closed since it is finite-dimensional and it is nowhere dense since it is a proper subset of X , cf. Lemma
3.5).

P r o o f 2. Using an enumeration of Y , we may construct via an easy mathematical induction a maximal
linearly independent subset of Y , say B. Then B is a denumerable Hamel basis for X , which contradicts the result
of Theorem 4.3.

(iv) → (v) Assume (iv). In view of Theorem 4.6, it suffices to show that (iv) implies that no infinite-
dimensional Banach space has a Hamel basis which can be written as a denumerable union of finite sets.
By way of a contradiction, assume that there is an infinite-dimensional Banach space X with a Hamel basis
B = ⋃{Bn : n ∈ ω}, where |{Bn : n ∈ ω}| = ℵ0 and for each n ∈ ω, Bn is a non-empty finite subset of X .
Then X = ⋃{Xn : n ∈ ω}, where Xn = 〈B0 ∪ B1 ∪ · · · ∪ Bn〉. Since each Xn is finite-dimensional, we obtain a
contradiction to the assumption of (iv), finishing the proof of the theorem. �

It is clear that BCT implies “every infinite-dimensional Banach space is Baire” implies “no infinite-dimensional
Banach space can be written as a denumerable union of closed proper subspaces”.

We do not know whether any of the above implications is reversible, or whether ACℵ0 implies “no infinite-
dimensional Banach space can be written as a denumerable union of closed proper subspaces”, or whether the
latter functional analytic statement is equivalent to DC, or even if ACℵ0

fin implies “no infinite-dimensional Banach
space can be written as a denumerable union of finite-dimensional subspaces”. However, we are able to show that
the implication “ACℵ0 implies (no infinite-dimensional Banach space can be written as a denumerable union of
finite-dimensional subspaces)” is not reversible in ZFA set theory, as our subsequent Theorem 5.2 clarifies.

We should also like to point out here that in view of Theorem 5.1 and of the forthcoming Theorem 6.1, it is
a striking result (and unexpected) that “no infinite-dimensional Banach space can be written as a denumerable
union of closed proper subspaces” implies “for every field F , every infinite-dimensional vector space V over F
has a denumerable linearly independent subset”.

Theorem 5.2 (i) (CH+Wℵ2) implies “no infinite-dimensional Banach space can be written as a denumerable
union of finite-dimensional subspaces”.

(ii) “No infinite-dimensional Banach space can be written as a denumerable union of finite-dimensional
subspaces” does not imply ACℵ0 in ZFA.

P r o o f . (i) Assume the hypothesis. In view of the forthcoming Theorem 6.4, we have that under our
hypothesis every infinite-dimensional Banach space has a linearly independent subset of cardinality ≥ 2ℵ0 . In
order to complete the proof of (i), we establish the following claim.

Claim 5.3 “Every infinite-dimensional Banach space has a linearly independent subset of cardinality ≥ 2ℵ0 ”
implies “no infinite-dimensional Banach space can be written as a denumerable union of finite-dimensional
subspaces”.

P r o o f . Assume the hypothesis of the claim and let X be an infinite-dimensional Banach space. By way of a
contradiction, assume that X = ⋃{Xn : n ∈ ω}, where n �→ Xn is a bijection and each Xn is a finite-dimensional
subspace of X . Let I be a linearly independent subset of X of size 2ℵ0 . Then I = ⋃{I ∩ Xn : n ∈ ω}, hence for
some n ∈ ω, I ∩ Xn must be infinite (otherwise, fixing a linear order on I we should have that I is a countable
union of finite well-ordered sets, thus I is countable, which is a contradiction). Since Xn is finite-dimensional and
I ∩ Xn is an infinite linearly independent set, we have reached a contradiction. This completes the proof. �

(ii) For the independence result, we use the permutation model N16 in [6], but with the restriction that we
start with a ground model of ZFA+ AC+ CH. We recall that N16 is constructed by starting with a set A of
atoms of cardinality ℵω. The group G is the group of all permutations of A and supports are subsets of the
atoms of cardinality less than ℵω. In this model, ACℵ0 is false and for every n ∈ ω, Wℵn is true. Thus, by (i), no
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infinite-dimensional Banach space can be written as a denumerable union of finite-dimensional subspaces in the
model, finishing the proof. �

Below, we provide some further terminology and notation which will be needed for our next result (Theo-
rem 5.5).

1. LetV = {Vi : i ∈ I } be a family of vector spaces over some field F . The direct sum (or weak direct product)
of the Vi ’s is

⊕
i∈I Vi = { f ∈ ∏

i∈I Vi : |{i ∈ I : f (i) �= 0}| < ℵ0}. It is easy to verify that
⊕

i∈I Vi is a
vector space over F with pointwise addition and scalar multiplication. Furthermore, if for each i ∈ I , || · ||i
is a norm on Vi , then || f || = ∑

i∈I || f (i)||i is a norm on
⊕

i∈I Vi .
2. Let n ∈ N and let X1, X2, . . . , Xn be Banach spaces. Then the direct sum vector space X1 ⊕ X2 ⊕ · · · ⊕ Xn

is a Banach space under the norm ||(x1, x2, . . . , xn)|| =
∑n

i=1 ||xi ||i (cf. [1, pp. 5–6]).
3. ≤ℵ0-MCℵ0 is the weak choice principle: For every denumerable disjoint family A = {Ai : i ∈ ω} of non-

empty sets, there exists a function f with domain ω such that for each i ∈ ω, f (i) is a non-empty countable
subset of Ai .

Lemma 5.4 ≤ℵ0-MCℵ0 if and only if≤ℵ0-PMCℵ0 (= “for every denumerable disjoint familyA = {Ai : i ∈ ω}
of non-empty sets, there exists an infinite subfamily B of A and a function f with domain B such that for each
B ∈ B, f (B) is a non-empty countable subset of B”).

P r o o f . (←) Let A = {Ai : i ∈ ω} be a denumerable disjoint family of non-empty sets. Let B0 = A0

and for each positive integer i , let Bi =
∏

j≤i A j . Then the family B = {Bi : i ∈ ω} has an infinite subfamily
C = {Bni : i ∈ ω}, (ni )i∈ω a strictly increasing sequence of natural numbers, with a function g such that for all
i ∈ ω, g(i) is a non-empty countable subset of Bni . On the basis of f and via mathematical induction, one may
easily construct a function f satisfying the conclusion of ≤ℵ0-MCℵ0 for the given family A. �

Theorem 5.5 Each of the following statements implies the one beneath it:

(a) ACℵ0 ;
(b) if {(Xi , || · ||i ) : i ∈ ω} is a denumerable family of non-trivial Banach spaces, then the direct sum vector

space
⊕

i∈ω Xi is not a Banach space under the norm || f || = ∑
i∈ω || f (i)||i ;

(c) ≤ℵ0-MCℵ0 .

P r o o f . (a)→ (b) Assume ACℵ0 and let {Xi : i ∈ ω} be a denumerable family of non-trivial Banach spaces.
Since Xi\{0} �= ∅ for all i ∈ ω, we may pick, via ACℵ0 , an element xi ∈ Xi\{0} for each i ∈ ω. Furthermore, we
may assume that ||xi ||i = 1

2i for all i ∈ ω (if ||xi ||i �= 1
2i , we may consider the element x ′i = 1

2i ||xi ||i xi ). Let (an)n∈ω

be the following sequence of elements of
⊕

i∈ω Xi : For each n ∈ ω, we let

an(i) =
{

xi if i ≤ n,

0 if i > n.

It is not hard to verify that (an)n∈ω is a Cauchy sequence in
⊕

i∈ω Xi , which does not converge in
⊕

i∈ω Xi

(otherwise, its limit should have only finitely many non-zero coordinates, which is impossible). Thus,
⊕

i∈ω Xi

fails to be a Banach space, finishing the proof of the implication.
(b) → (c) Assume the statement in (b). In view of Lemma 5.4, it suffices to show that ≤ℵ0-PMCℵ0 holds.

Towards a proof by contradiction assume that there exists a denumerable disjoint family A = {Ai : i ∈ ω} which
has no infinite subfamily satisfying the conclusion of ≤ℵ0-PMCℵ0 for A. For each i ∈ ω, consider the Banach
space Xi = �2(Ai ). Let

⊕
i∈ω Xi be the direct sum vector space endowed with the norm ||(xi )i∈ω =

∑
i∈ω ||xi ||i .

From our hypothesis, we have that (
⊕

i∈ω Xi , || · ||) is not a Banach space.
We shall obtain a contradiction by showing that the pair (

⊕
i∈ω Xi , || · ||) is a Banach space. To this end, let

(an)n∈ω be a Cauchy sequence in
⊕

i∈ω Xi . Since A does not have a partial ≤ℵ0-MCℵ0 function, it follows that
there is an m ∈ ω such that for all n ∈ ω and all i > m, we have that an(i) = 0 (otherwise, via mathematical
induction, and using the definition of �2(·), we may easily construct an infinite subfamily of A with an≤ℵ0-MCℵ0

function; we take the liberty to leave the details to the interested reader).
But then, the sequence (an)n∈ω can be viewed as a Cauchy sequence in the direct sum X1 ⊕ X2 ⊕ · · · ⊕ Xm ⊕

{0} ⊕ {0} ⊕ · · · , which is homeomorphic with the finite direct sum Banach space X1 ⊕ X2 ⊕ · · · ⊕ Xm (with
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the norm ||(xi )i≤m || =
∑

i≤m ||xi ||i ). It follows that (an)n∈ω converges to an element a ∈ X1 ⊕ X2 ⊕ · · · ⊕ Xm ⊕
{0} ⊕ {0} ⊕ · · · , thus converges to an element of

⊕
i∈ω Xi . Consequently, (

⊕
i∈ω Xi , || · ||) is a Banach space,

which is a contradiction. It follows that A has a partial≤ℵ0-MCℵ0 function, hence≤ℵ0-MCℵ0 holds, finishing the
proof of the implication and of the theorem. �

6 On the existence of infinite linearly independent sets of certain
cardinality in infinite-dimensional Banach spaces

In this section, we shall be concerned with the set-theoretic strength of the statements
(a) every infinite-dimensional Banach space has a linearly independent subset of cardinality ≥ 2ℵ0 ,
(b) every infinite-dimensional Banach space has a denumerable linearly independent subset.
It is clear that (a) → (b). We begin by establishing a result on the set-theoretic strength of the more general

statement “for every field F , every infinite-dimensional vector space V over F has a denumerable linearly
independent subset”.

Theorem 6.1 Each of the following statements implies the one beneath it:

(i) ACℵ0 ;
(ii) for every field F, every infinite-dimensional vector space V over F has a denumerable linearly independent

subset;
(iii) MCℵ0 .

P r o o f . (i) → (ii) Assume ACℵ0 . Let F be any field and let X be an infinite-dimensional vector space over
F . For each n ∈ ω\{0}, let

An = {(x0, x1, . . . , xn) ∈ Xn+1 : x0 �= 0, and for all 1 ≤ i ≤ n, xi �∈ 〈x0, x1, . . . , xi−1〉}.
Since X is infinite-dimensional, it follows that An �= ∅ for all n ∈ ω\{0}. Let A = {An : n ∈ ω\{0}} and let, by
ACℵ0 , f = {(n, (x (n)

0 , x (n)
1 , . . . , x (n)

n )) : n ∈ ω\{0}} be a choice function of A. Note that by the definition of An ,
ran( f (n)) is an (n + 1)-sized set of linearly independent vectors of X . Let A = ⋃{ran( f (n)) : n ∈ ω\{0}}. It is
clear that A is denumerable. Furthermore, since A has finite sequences of linearly independent vectors of arbitrary
finite length, we may construct—via mathematical induction—a denumerable linearly independent subset of X .
Indeed, let y0 = x (1)

0 . Then y0 is linearly independent, since y0 �= 0 (cf. the definition of An). Assume that for some
n ∈ ω\{0} we have chosen linearly independent vectors y0, y1, . . . , yn ∈ A. Since dim(〈y0, y1, . . . , yn〉) = n + 1
and ran( f (n + 1)) consists of n + 2 linearly independent vectors, it follows that there exists an element x ∈
ran( f (n + 1)) which does not belong to 〈y0, y1, . . . , yn〉. Let jn+1 = min{ j : j < n + 2 and x (n+1)

j ∈ ran( f (n +
1))\〈y0, y1, . . . , yn〉}. Put yn+1 = x (n+1)

jn+1
. This completes the inductive step.

From the inductive construction above, we conclude that {yn : n ∈ ω} is a denumerable linearly independent
subset of X .

(ii) → (iii) Assume the hypothesis. It suffices to show that every denumerable family of non-empty sets has
a partial multiple choice function. To this end, let X = {Xi : i ∈ ω} be a denumerable family of non-empty sets
which, without loss of generality, we assume that it is disjoint. Let X = ⋃X and let F be any field which is disjoint
from X . Let F(X) be the field of all rational functions with indeterminates from X and coefficients in F . (Every
element u ∈ F(X) is of the form p1+...+pn

q1+...+qm
, where pi and qi are monomials, i.e., of the form a · xn1

1 · xn2
2 · . . . xnk

k
where a ∈ F and the xr ’s belong to X , and q1 + . . .+ qm �= 0.) For every i ∈ ω, the i-degree of a monomial
p = a · xn1

1 · xn2
2 · . . . xnk

k is defined as
∑

xr∈Xi
nr . A rational function u ∈ F(X) is called i-homogeneous of degree

0 if all monomials appearing in the (quotient) expression of u have the same i-degree. Let K be the subfield of
F(X) consisting of all rational functions in F(X) that are i-homogeneous of degree 0 for all i ∈ ω. Then F(X)
is a vector space over K .

For each i ∈ ω, let Vi be the subspace of F(X) which is generated by Xi , i.e. Vi is the linear span 〈Xi 〉. Note
that for each i ∈ ω, Vi is finite-dimensional. Indeed, let x be any element of Xi . Then for all y ∈ Xi with y �= x ,
we have that y = y

x · x and y
x ∈ K . It follows that Vi = 〈x〉.

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



Math. Log. Quart. 63, No. 6 (2017) / www.mlq-journal.org 529

Let V be the weak direct product of the Vi ’s, i.e.,

V = { f ∈
∏
i∈ω

Vi : f has finite support, i.e., |{i ∈ ω : f (i) �= 0}| < ℵ0}

with pointwise operations. Then V is an infinite-dimensional vector space over K . By our assumption, we have
that V has a denumerable linearly independent subset, say D = { fn : n ∈ ω}. Then fn �= 0 for all n ∈ ω. Using
the fact that D is linearly independent, the fact that each Vi is finite-dimensional, the form of the elements of each
Vi , and finally the fact that every function f ∈ V has finite support, we may construct via mathematical induction
an infinite subfamily Y of X with a multiple choice function. This completes the proof of the implication and of
the theorem. �

Corollary 6.2 ACℵ0 implies “every infinite-dimensional Banach space has a denumerable linearly independent
subset”.

Theorem 6.3 (i) “Every infinite-dimensional Banach space has a denumerable linearly independent subset”
implies PKWℵ0

fin,≥2 implies “∀n ∈ ω\{0, 1}, PACℵ0≤n”.
(ii) “Every infinite-dimensional Banach space has a denumerable linearly independent subset” implies “there

are no amorphous sets”.
(iii) “Every infinite-dimensional Banach space has a denumerable linearly independent subset”+ACℵ0

fin implies
DF=F.

(iv) MC does not imply “every infinite-dimensional Banach space has a denumerable linearly independent
subset” in ZFA.

P r o o f . (i) For the first implication, assume the hypothesis and letA = {Ai : i ∈ ω} be a denumerable disjoint
family of finite sets, each having at least two elements. Towards a proof by contradiction assume that A has no
partial Kinna-Wagner selection function. Consider the infinite-dimensional Hilbert space �2(A), where A = ⋃A.
Since A has no partial Kinna-Wagner function, it follows (by the definition of �2(A)) that for all f ∈ �2(A), the
support s( f ) = {x ∈ A : f (x) �= 0} of f is finite. Let Y = { f ∈ �2(A) : ∀i ∈ ω,

∑
x∈Ai

f (x) = 0}. Then Y has
the following properties:

1. Y is an infinite-dimensional subspace of �2(A). (This is clear.)
2. Y is complete, thus a Banach space. Indeed, let ( fn)n∈ω be a Cauchy sequence of elements of Y . Due to the

property of the elements of Y and the fact that for all n ∈ ω, |s( fn)| < ℵ0, we may conclude that there is an
n0 ∈ ω such that for all n ∈ ω, all i > n0, and all x ∈ Ai , fn(x) = 0; otherwise, via an easy mathematical
induction, and noting that if g is an element of �2(A) which is not identically zero on Ai , then there are
elements x ∈ Ai such that g(x) > 0 and elements y ∈ Ai such that g(y) < 0, we may construct a partial
Kinna-Wagner function of A, which contradicts our assumption on A. Thus, ( fn)n∈ω can be viewed as a
sequence of elements of R

⋃{Ai :i<n0+1}.
Let ε > 0. Since ( fn)n∈ω is Cauchy, there is an n0 ∈ ω such that for all n, m ≥ n0, || fn − fm || < ε, or
equivalently

∀n, m ≥ n0,

√∑
x∈A

| fn(x)− fm(x)|2 < ε,

or equivalently

∀n, m ≥ n0,

√ ∑
x∈⋃{Ai :i<n0+1}

| fn(x)− fm(x)|2 < ε.

Then for all n, m ≥ n0 and all x ∈ ⋃{Ai : i < n0 + 1}, we have that

| fn(x)− fm(x)| ≤
√ ∑

y∈⋃{Ai :i<n0+1}
| fn(y)− fm(y)|2 < ε,

which implies that for all x ∈ ⋃{Ai : i < n0 + 1}, ( fn(x))n∈ω is a Cauchy sequence of reals and thus
( fn(x))n∈ω converges in R for every x ∈ ⋃{Ai : i < n0 + 1}. Define a mapping f : A → R by requiring
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f (x) = limn→∞ fn(x) if x ∈ ⋃{Ai : i < n0 + 1} and f (x) = 0 if x ∈ ⋃{Ai : i ≥ n0 + 1}. Since for all
n ∈ ω,

∑
x∈Ai

fn(x) = 0, it follows that
∑

x∈⋃{Ai :i<n0+1} f (x) = 0. Thus, f ∈ Y . Furthermore, it is easy
to show that ( fn)n∈ω converges to f , so we leave the details to the interested reader. Thus, Y is a Banach
space.

By our hypothesis, there is a denumerable linearly independent subset D = { fn : n ∈ ω} of Y . Taking into
account,

(a) the definition of Y ,
(b) the fact that no fn can be the constant function 0 (i.e., the identically zero function),
(c) D is not included in the finite-dimensional subspace Zn = { f ∈ Y : ∀k > n,∀x ∈ Ak, f (x) = 0} of Y for

each n ∈ ω,

we may easily define a partial Kinna-Wagner selection function for the family A, which is a contradiction. This
completes the proof of the first implication.

The second implication can be proved via mathematical induction.
(ii) Assume the hypothesis and, towards a proof by contradiction, let X be an amorphous set (i.e., X is infinite

and cannot be expressed as a disjoint union of two infinite sets). Consider the infinite-dimensional Hilbert space
�2(X). By our hypothesis, �2(X) has a denumerable linearly independent subset, say D = { fn : n ∈ ω}. Since X
is amorphous, we have that for all n ∈ ω, the support s( fn) of fn is finite, and since D is linearly independent,
we must have that

⋃{s( fn) : n ∈ ω} is infinite (otherwise, D can be viewed as a subset of the finite-dimensional
space R

⋃{s( fn):n∈ω}, which is impossible), thusS = {s( fn) : n ∈ ω} is countably infinite. Without loss of generality
assume that S is disjoint; otherwise, using the fact that S is denumerable and that s( fn) is finite for every n ∈ ω, we
may easily construct a denumerable disjoint family {dni : i ∈ ω} (where (ni )i∈ω is a strictly increasing sequence)
such that for all i ∈ ω, dni ⊆ s( fni ). But then {⋃{s( f2n) : n ∈ ω}, X\⋃{s( f2n) : n ∈ ω}} is a partition of X into
two infinite sets, which is a contradiction. This completes the proof.

(iii) Let A be an infinite Dedekind-finite set and let H = �2(A). For each x ∈ H , s(x) = {a ∈ A : x(a) �= 0}
is finite. Let {xn : n ∈ ω} be a denumerable linearly independent subset of H . For each k ∈ ω there is an
n ∈ ω such that s(xn)\

⋃
i≤k s(xi ) �= ∅. (Because {x ∈ H : s(x) ⊆ ⋃

i≤k s(i)} is finite-dimensional.) We define
a subsequence {y j }∞j=0 of {xn}∞n=0 by recursion as follows: y0 = x0 and y j+1 = xm where m is the least natural
number k for which s(xk)\

⋃
i< j s(yi ) �= ∅. Then the sequence (An)n∈ω defined by A0 = s(y0) and for n > 0,

An = s(yn)\s(yn−1), is a sequence of non-empty, pairwise disjoint, finite subsets of A. Applying ACℵ0
fin gives a

denumerable subset of A. This is a contradiction. Thus, DF=F holds.
(iv) This follows from part (i) and the fact that the second Fraenkel model N2 in [6] satisfies MC+¬(∀n ∈

ω\{0, 1},PACℵ0≤n) (cf. [6]). �
We note that the reason one can not work directly with the space �2(A) in the proof of the first implication in

part (i) of Theorem 6.3, but has to consider a suitable subspace of �2(A), is that �2(A) does have a denumerable
linearly independent subset, namely {χAn : n ∈ ω} where χAn is the characteristic function of An .

We should also like to point out here that the statement “every infinite-dimensional separable normed space X
has a denumerable linearly independent subset which is dense in X” is provable in ZF.

Indeed, let X be an infinite-dimensional and separable normed space. Let D = {dn : n ∈ ω} be a denumerable
dense subset of X . Then the topology on X induced by the norm has a countable base, say O = {On : n ∈ ω}.
Via mathematical induction we construct the required set. Start with any element x0 ∈ O0. Assume that we have
chosen elements x0, x1, . . . , xn ∈ X such that for 1 ≤ i ≤ n, xi ∈ Oi\〈x0, . . . , xi−1〉. By Lemma 3.5 we have
that On+1\〈x0, x1, . . . , xn〉 is non-empty and open. Let mn+1 = min{m ∈ ω : dm ∈ On+1\〈x0, x1, . . . , xn〉}. Put
xn+1 = dmn+1 . This concludes the inductive step.

By the inductive construction, it follows that {xn : n ∈ ω} is a denumerable linearly independent subset of X
which is dense in X .

Furthermore, it is interesting to note that the statement “no infinite-dimensional separable Banach space has a
Hamel basis which can be written as a denumerable union of finite sets” is also provable in ZF. Indeed, if X is an
infinite-dimensional separable Banach space, then |X | = 2ℵ0 . Thus, if X had a Hamel basis B = ⋃{Bn : n ∈ ω},
|Bn| < ℵ0 for all n ∈ ω, then |B| = ℵ0. This would contradict the result of Theorem 4.3 that no infinite-dimensional
Banach space has a denumerable Hamel basis.
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Fig. 1 Results from § 4.

Fig. 2 Results from § 4.

We do not know whether “no infinite-dimensional separable Banach space has a well-orderable Hamel basis
of cardinality < 2ℵ0 ” is provable in ZF.

Theorem 6.4 (i) “Every infinite-dimensional Banach space X has a linearly independent subset of cardinality
≥ 2ℵ0 ” implies DF=F.

(ii) “No infinite-dimensional Banach space has a Hamel basis of cardinality < 2ℵ0 ” does not imply “every
infinite-dimensional Banach space has a linearly independent subset of cardinality ≥ 2ℵ0 ” in ZFA.

(iii) Assume CH+Wℵ2 . Then every infinite-dimensional Banach space has a linearly independent subset of
cardinality ≥ 2ℵ0 .

(iv) “Every infinite-dimensional Banach space has a linearly independent subset of cardinality ≥ 2ℵ0 ” does
not imply ACℵ0 in ZFA.

P r o o f . (i) Assume the hypothesis. By Claim 5.3 of the proof of Theorem 5.2 we have that our hypothesis
implies “no infinite-dimensional Banach space can be written as a denumerable union of finite-dimensional
subspaces”. By Theorem 5.1, the latter statement implies ACℵ0

fin. Since our hypothesis clearly implies that every
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Fig. 3 Results from §§ 5 and 6.

infinite-dimensional Banach space has a denumerable linearly independent subset, the conclusion follows from
part (iii) of Theorem 6.3.

(ii) This follows from Corollary 4.9(ii) and Theorem 6.3(iv) (or from part (i) of the current theorem and the
fact that DF=F is false in several Fraenkel-Mostowski models, e.g., the second Fraenkel model N2 in [6]).

(iii) Assume the hypothesis and let X be an infinite-dimensional Banach space. By Wℵ2 , either |X | ≤ ℵ2 or
|X | ≥ ℵ2. In the first case, X is well-orderable, say by≤. Choose a non-zero element x0 of X and define a function
f from ℵ1 → X by recursion as follows. f (0) = x0 and

f ( j) = the ≤-least element of X which does not belong to the linear span of {xi : i < j}. (11)

f ( j) is defined for every j < ℵ1; first note that the recursion can not stop after finitely many steps, since X is
infinite-dimensional. Furthermore, the recursion can not be terminated at some countable stage. If not, let j∗ be
the least ordinal in ℵ1 such that X = 〈{xi : i < j∗}〉. By the construction, {xi : i < j∗} is linearly independent, and
since it spans X , it is also a Hamel basis for X . Since |{xi : i < j∗}| = ℵ0, this contradicts the result of Theorem
4.3 that (in ZF) no infinite-dimensional Banach space has a denumerable Hamel basis.

Thus, the range of f will be an ℵ1-sized linearly independent subset of X and by the assumption of CH we
have that X has a continuum sized linearly independent subset.

In the second case, if |X | ≥ ℵ2, then X has a well-orderable subset Y such that |Y | = ℵ2. Then the subspace
〈Y 〉 of X spanned by Y is well-orderable, in particular, |〈Y 〉| = ℵ2 for |Y | = ℵ2 and 2ℵ0 = ℵ1. Further, 〈Y 〉 is
(not necessarily a Banach space and) not finite-dimensional, since any finite-dimensional, non-trivial, real vector
space has cardinality 2ℵ0 and according to our hypothesis 2ℵ0 = ℵ1. Let ≤ be a well ordering of 〈Y 〉 and let x0 be
an element of Y . Define f : ℵ1 → 〈Y 〉 as was done previously in (11). Then once again f ( j) is defined for every
j ∈ ℵ1 for, if not, the set {xi : i < j∗} spans 〈Y 〉 for some j∗ < ℵ1. But then |〈Y 〉| = |〈{xi : i < j∗}〉| = 2ℵ0 = ℵ1

and |〈Y 〉| = ℵ2, a contradiction. It follows that the range of f is a continuum sized linearly independent subset of
X . This completes the proof of part (iii).
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Fig. 4 Results from § 6.

(iv) We may work here as in the proof of Theorem 5.2. In particular, we use the permutation model N16 in [6]
(which satisfies Wℵn for all n ∈ ω), but starting with a ground model M such that M |= ZFA+ AC+ CH. The
result now follows from the properties of the FM model and part (iii) of the current theorem. �

We should like to point out here that in view of Theorem 4.8 and the fact that AC is equivalent to the trichotomy
of cardinals, i.e., the statement “for all sets A and B, |A| ≤ |B| or |B| ≤ |A|” (cf. [6]), we obtain that “for
every infinite-dimensional Banach space X and for every Hamel basis B of X , 2ℵ0 ≤ |B|” is a theorem of ZFC.
However, the latter proposition is not provable in ZF. Indeed, we observe that it implies DF=F; assuming the
above proposition, let D be an infinite Dedekind-finite set and let X be the infinite-dimensional Hilbert space
�2(D). Then for each f ∈ X , the support s( f ) of f is finite. Thus, B = {χ{d} : d ∈ D} is a Hamel basis for X .
By assumption, we have that 2ℵ0 ≤ |B|, from which it follows that D has a denumerable subset, a contradiction.

7 Summary

We summarize main results of our paper in the form of diagrams. In order to facilitate the reader in studying
the diagrams, we introduce some further notation for propositions whose mutual relationships and set-theoretic
strength were studied in the paper.

1. NIDBS-HamB(ℵ0): No infinite-dimensional Banach space has a denumerable Hamel basis.
2. NIDBS-HamB(< 2ℵ0): No infinite-dimensional Banach space has a Hamel basis of cardinality < 2ℵ0 .
3. NIDBS-woHamB(< 2ℵ0): No infinite-dimensional Banach space has a well-orderable Hamel basis of

cardinality < 2ℵ0 .
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4. NIDBS-HamB(DenUnFin): No infinite-dimensional Banach space has a Hamel basis which can be written
as a denumerable union of finite sets.

5. IDBS-loHamB: Every infinite-dimensional Banach space has a linearly orderable Hamel basis.
6. IDBS-woHamB: Every infinite-dimensional Banach space has a well-orderable Hamel basis.
7. ML: Mazur’s Lemma; Let X be an infinite-dimensional Banach space, let Y be a finite-dimensional vector

subspace of X , and let ε > 0. Then there is a unit vector x ∈ X such that ||y|| ≤ (1+ ε)||y + αx || for all
y ∈ Y and all scalars α).

8. NIDBS(DenUnCPSubSp): No infinite-dimensional Banach space can be written as a denumerable union
of closed proper subspaces.

9. NIDBS(DenUnFDSubSp): No infinite-dimensional Banach space can be written as a denumerable union
of finite-dimensional subspaces.

10. Let F be a field. IDVS-DenLISet(F): every infinite-dimensional vector space over F has a denumerable
linearly independent subset.

11. IDVS-DenLISet: (∀F)(IDVS-DenLISet(F)), where the parameter F denotes a field.
12. IDBS-LISet(≥ 2ℵ0): every infinite-dimensional Banach space has a linearly independent subset of cardi-

nality ≥ 2ℵ0 .
13. IDBS-DenLISet: every infinite-dimensional Banach space has a denumerable linearly independent subset.
14. NA: There are no amorphous sets.

We first list main results of the paper that are proven to be theorems of ZF:

(ZF) A normed real vector space (X, || · ||) is finite-dimensional if and only if its closed unit ball BX is compact
(Theorem 3.6).

(ZF) Mazur’s Lemma ML (Lemma 3.7).
(ZF) NIDBS-woHamB(< 2ℵ0) (Theorem 4.8(ii)).

We proceed now with the diagrams that summarize results of our paper. Figures 1, 3 and 4 suggest several
open problems (and we note that there are no open problems from Figure 2). To mention a few:

(a) Does IDBS-DenLISet imply DF=F? (Cf. Figure 4),
(b) does ACℵ0 imply IDBS-LISet(≥ 2ℵ0)? (Cf. Figures 3 & 4),
(c) is NIDBS(DenUnCPSubSp) equivalent to DC? (Cf. Figure 3),
(d) does ACℵ0 imply NIDBS(DenUnCPSubSp)? (Cf. Figure 3),
(e) does ACℵ0

fin imply NIDBS(DenUnFDSubSp)? (Cf. Figure 3),
(f) does IDBS-LISet(≥ 2ℵ0) imply NIDBS-HamB(< 2ℵ0)? (Cf. Figure 3).

Another interesting open problem which is related to problem (f) above, as well as to Lemma 4.7 & Theorem
4.8, is the following:

(g) If B is a Dedekind-infinite Hamel basis of a Banach space such that |B| ≤ 2ℵ0 , is it true (in ZF) that
|B| = 2ℵ0 ?

(h) Does IDBS-loHamB imply IDBS-woHamB? (Cf. Figure 1)
(i) Does OP imply IDBS-loHamB? (Cf. Figure 1)
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