
Mathematics 131B, Fall 2016 – Rami Luisto
Addon 01 - sup-metric is a metric.

We went through this proof on Friday lecture September 23rd. The proof is a bit
technical, and the setting is quite abstract (the points of our space are functions)
but this is a very important example of a metric for us. By studying metrics instead
of explicitly defined distance functions we pay a cost of abstractness, but we gain a
lot since we can apply the same machinery to a plethora of different scenarios. If
we only studied Euclidean spaces the cost would be quite steep w.r.t. the benefits,
but especially in the domain of functions spaces (e.g. C([0, 1],R)) we can get a lot of
use of the theory of metric spaces after we go through the effort of making sure we
actually have a metric! Getting our hands dirty with the technicalities at this point
will save us from a lot of sweat and tears later on.

Definition 1. A pair (X, d), where X is a set and d : X × X → R a mapping, is a
metric space (and d a metric) if the following conditions hold:

a) d(x, x) = 0 for all x ∈ X,
b) for x, y ∈ X with x 6= y, we have d(x, y) > 0,
c) d(x, y) = d(y, x) for all x, y ∈ X, and
d) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Definition 2. Let C([0, 1],R) be the collection of all continuous mappings f : [0, 1]→
R. The mapping

d∞ : C([0, 1],R)× C([0, 1],R)→ R, d∞(f, g) = sup
x∈[0,1]

|f(x)− g(x)|

is called the sup-metric.

Proposition 3. The sup-metric is a metric, i.e. (C([0, 1],R), d∞) is a metric space.

Proof. We go through the definitions of a metric one by one. In the following, f , g
and h are continuous functions [0, 1]→ R.

a) By a direct calculation1 we see that

d∞(f, f) = sup
x∈[0,1]

|f(x)− f(x)| = sup
x∈[0,1]

0 = 0.

b) We want to show that if f 6= g, then d∞(f, g) > 0. We prove this by showing
that if d∞(f, g) = 0, then f = g.2 We see that

d∞(f, g) = 0⇔ sup
x∈[0,1]

|f(x)− g(x)| = 0.

By the definition of supremum, we thus have for all y ∈ [0, 1] that

|f(y)− g(y)| ≤ sup
x∈[0,1]

|f(x)− g(x)| = 0.

1If this is difficult to follow, I recommend reviewing the defintion (and use) of the supremum.
2Why are these two claims equivalent?
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Since for all y ∈ [0, 1], |f(y)− g(y)| ≥ 0, we see that in fact |f(y)− g(y)| = 0 for
all y ∈ [0, 1]. This means that f(y) = g(y) for all y ∈ [0, 1], so f = g and the
condition b) holds true.

c) By a direct calculation we see that3

d∞(f, g) = sup
x∈[0,1]

|f(x)− g(x)|

= sup
x∈[0,1]

|(−1) · (g(x)− f(x))|

= sup
x∈[0,1]

|(−1)| · |(g(x)− f(x))|

= sup
x∈[0,1]

1 · |(g(x)− f(x))|

= sup
x∈[0,1]

|(g(x)− f(x))|

= d∞(g, f)

d) Note first that for all y ∈ [0, 1],

|f(y)− g(y)| = |(f(y)− h(y)) + (h(y) + g(y))| ≤ |f(y)− h(y)|+ |h(y) + g(y)|

since the absolute value is a norm. Thus we can deduce4 that

d∞(f, g) = sup
x∈[0,1]

|f(x)− g(x)|

≤ sup
x∈[0,1]

(|f(x)− h(x)|+ |h(x) + g(x)|) .

Since the functions f , h and g are continuous, so is the mapping

y 7→ (|f(x)− h(x)|+ |h(x)− g(x)|) .

As continuous mapping defined on a closed interval, it attains its maximum value
at some point x0 ∈ [0, 1]. Thus

sup
x∈[0,1]

(|f(x)− h(x)|+ |h(x)− g(x)|) = |f(x0)− h(x0)|+ |h(x0)− g(x0)|.

By the definition of a supremum, |f(x0)− h(x0)| ≤ supx∈[0,1] |f(x)− h(x)|, (and

similarly for the other part) so we get

|f(x0)− h(x0)|+ |h(x0)− g(x0)| ≤

(
sup

x∈[0,1]
|f(x)− h(x)|

)
+

(
sup

x∈[0,1]
|h(x)− g(x)|

)

3If this is difficult to follow, I recommend reviewing the defintion (and use) of the supremum.
4Againg, if this feels hard, I recommend reviewing the basics of the supremum.
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Combining all the inequalities, we have

d∞(f, g) ≤ sup
x∈[0,1]

(|f(x)− h(x)|+ |h(x) + g(x)|)

≤

(
sup

x∈[0,1]
|f(x)− h(x)|

)
+

(
sup

x∈[0,1]
|h(x) + g(x)|

)
= d∞(f, h) + d∞(h, g).
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