Mathematics 131B, Fall 2016 — Rami Luisto
Addon 01 - sup-metric is a metric.

We went through this proof on Friday lecture September 23rd. The proof is a bit
technical, and the setting is quite abstract (the points of our space are functions)
but this is a very important example of a metric for us. By studying metrics instead
of explicitly defined distance functions we pay a cost of abstractness, but we gain a
lot since we can apply the same machinery to a plethora of different scenarios. If
we only studied Euclidean spaces the cost would be quite steep w.r.t. the benefits,
but especially in the domain of functions spaces (e.g. C([0,1],R)) we can get a lot of
use of the theory of metric spaces after we go through the effort of making sure we
actually have a metric! Getting our hands dirty with the technicalities at this point
will save us from a lot of sweat and tears later on.

Definition 1. A pair (X, d), where X is a set and d: X x X — R a mapping, is a
metric space (and d a metric) if the following conditions hold:

a) d(x,z) =0 for all z € X,

b) for z,y € X with = # y, we have d(z,y) > 0,

¢) d(z,y) =d(y,z) for all z,y € X, and

d) d(z,y) < d(z,z) +d(z,y) for all x,y,z € X.

Definition 2. Let C(]0,1],R) be the collection of all continuous mappings f: [0,1] —
R. The mapping
doo: C([0,1],R) x C([0,1,R) = R, dus(f,9) = sup [f(z) — g(z)]
ze|0,
is called the sup-metric.
Proposition 3. The sup-metric is a metric, i.e. (C([0,1],R), d) is a metric space.
Proof. We go through the definitions of a metric one by one. In the following, f, g
and h are continuous functions [0, 1] — R.
a) By a direct calculation! we see that
doo(f, f) = sup |f(z) — f(z)| = sup 0=0.
z€[0,1] z€[0,1]
b) We want to show that if f # g, then dw(f,g9) > 0. We prove this by showing
that if doo(f, g) = 0, then f = g.2 We see that
doo(f,9) =0« sup |f(x)—g(x)| =0.
z€0,1]
By the definition of supremum, we thus have for all y € [0, 1] that
1f) —g(y)l < sup |f(z) —g(z)| = 0.

z€0,1]

1f this is difficult to follow, I recommend reviewing the defintion (and use) of the supremum.
2VVhy are these two claims equivalent?
1



Since for all y € [0,1], |f(y) — g(y)| > 0, we see that in fact | f(y) — g(y)| = 0 for
all y € [0,1]. This means that f(y) = g(y) for all y € [0,1], so f = ¢ and the
condition b) holds true.

By a direct calculation we see that?

doo(f,9) = sup [f(x) — g(z)]

z€[0,1]

= sup [(—1)- (g9(z) — f(z))|

z€[0,1]

= sup [(=1)]-|(g(z) = f(2))|

z€[0,1]

= sup 1-|(g(z) - f(2))l

z€[0,1]

= sup |(g(z) — f(z))]
z€[0,1]

Note first that for all y € [0, 1],

|f(y) —gW)| = |(f(y) = h(y)) + (h(y) + gW)| < [f(y) — h(y)| + [h(y) + g(v)|

since the absolute value is a norm. Thus we can deduce* that

doo(fy9) = sup |f(z) — g(z)]
z€[0,1]

< sup (|f(z) = h(x)| + |h(x) + g(x)]) -

Since the functions f, h and g are continuous, so is the mapping

y = (If (@) = h(z)] + [h(z) — g(2)]) -

As continuous mapping defined on a closed interval, it attains its maximum value
at some point zg € [0,1]. Thus

o (If (@) = h(2)| + |h(z) — g(@)[) = [f(x0) — h(xo)| + [A(x0) — g(0)|-

By the definition of a supremum, |f(x0) — h(zo)| < supyepq) [f(z) — h(z)|, (and
similarly for the other part) so we get

z€[0,1] z€[0,1]

|/ (x0) — h(xo)| + [A(x0) — g(o)| < < sup |f(z) — h(m)l> + < sup [h(x) —9(1‘)|>

3If this is difficult to follow, I recommend reviewing the defintion (and use) of the supremum.
4Againg, if this feels hard, I recommend reviewing the basics of the supremum.



Combining all the inequalities, we have

doo(f,9) < up (If (@) = h(@)[ + [h(z) + g(2)])

< ( sup [f(z) — h(fﬂ)\) + < sup |h(z) +g(x)!>

z€[0,1] z€[0,1]



