This is an archived version of the homepage of this course.

Course Blog for Math 131B - Fall 2016

This blog will contain short posts about what we have done on previous lectures.

Week 9

No quizzes on week 9! Note that on Thursday and Friday we have no teaching due to thanksgiving.

Lecture 1 of week 8

We continued our study of the Fourier transform. We have basically covered subsections 5.1. to 5.3. so far.

Here are some links to play with sums of trigonometric polynomials:

A few more links to study the Fourier transformation. (Thanks to David for the good ideas!)

Week 8

Lecture 3 of week 8

The question of the quiz was: "What is the definition of inner product of L_2?" (This is definition 5.2.1. in the book. Alternatively, you can study the defintition in mathworld .

Lecture 2 of week 8

The question of the quiz was: "What is the definition of inner product?"

We studied the sine and cosine functions defined via the complex exponential map. Then we studied some motivations for the Fourier theory we start to approach.

Lecture 1 of week 8

We studied the definitions of the exponential map via formal power series and the real logarithm as the inverse of the exponential. Next lecture we continue from the definition of sine and cosine via the complex exponential map.

Week 7

Lecture 3 of week 6

Veterans' day holiday

Lecture 2 of week 6

The question of the quiz was: "What is the statement of Taylor's formula?" (There are several slightly differing versions of this formula/theorem. Any of them, e.g. Corollary 4.2.10. in Tao's book will do for the quiz.)

Lecture 1 of week 6

Review for midterm.

Week 6

Lecture 3 of week 6

Review for midterm.

Lecture 2 of week 6

Substitute lecturer.

Lecture 1 of week 6

Substitute lecturer.

Week 5

Lecture 3 of week 5

Substitute lecturer.

Lecture 2 of week 5

The question of the quiz will be: "What is the statement of the Weierstrass approximation theorem?" (Theorem 3.8.3. in Tao's book.)

Lecture 1 of week 5

The question of the quiz was: "What is the statement of the Weierstrass M-test theorem?" (Theorem 3.5.7. in Tao's book.)

We proved the Weierstrass M-test, together with a simple Lemma, stating that if a sequence of continuous mappings is Cauchy w.r.t. the supremum norm and converges pointwise to a map, then the sequence actually converges uniformly to said map. Furthermore we proved (mostly) Theorem 3.7.1. stating that if a sequence of maps has continuous derivatives converging uniformly to a limit map, then the limit map itself converges (with a few extra assumptions).

Week 4

Lecture 3 of week 4

We had no quiz. We showed that the uniform limit of continuous functions is continuous and that the uniform limit of Riemann-integrable functions is Riemann-integrable with the limit of the integrals equaling the integral of the limit function.

You might find this worksheet by David to be useful to understand the nuances of changing limits w.r.t. integrals and derivatives.

Lecture 2 of week 4

The question on the quiz was: "What is the definition of pointwise convergence (of a sequence of functions)?" We motivated some ideas we will be focusing on the next three-ish weeks.

Lecture 1 of week 4

Midterm!

Week 3

Lecture 3 of week 3

We will spend the lecture on review, no quiz!

Lecture 2 of week 3

The question on the quiz was: "What is the definition of a connected metric space?"

We studied continuity, especially we showed that a mapping is continuous if and only if the pre-image of any open set is open.

Lecture 1 of week 3

The question on the quiz was: "What is the definition of a continuous function between metric spaces?"

We showed that compact implies sequantially compact, the reverse direction can be found from Tao's book. From now on we will use mostly sequential compactness! We also went through the Heine-Borel theorem: a set in the euclidean space is compact if and only if it is closed and bounded. Furthermore we defined continuity of a mapping between metric spaces, and looked at a few examples.

Week 2

Lecture 1 of week 2

The question on the quiz was: "What is the definition of a Cauchy sequence?"

We defined the concept of relative topology, and talked about how certain concepts, like opennes and closedness, are dependant on the ambient space. We are approaching the concept of completeness, which will not depend on the ambient structure. On the way there we defined what is a Cauchy sequence, and showed that converging sequences are Cauchy and that a Cauchy sequence is always bounded.

As a complete side remark, I mentioned the Kempner series, see also this.

Lecture 2 of week 2

The question on the quiz was: "What is the definition of a complete metric space?"

We defined what is a complete metric space, and went through several examples. Any space with a discrete metric is complete, as are the space of real numbers with the euclidean metric and the space of continuous functions of the unit interval equipped with the supremum metric. On the other hand, equipped with the standard metric the open unit interval and the set of rational numbers are not complete.

Lecture 3 of week 2

The question on the quiz was: "What is the definition of a compact metric space?"

We defined the concept of compactness and looked at a few examples. We will mostly use the definition of sequential compactness in the course, but we also looked at the definition via open covers.

Week 1

Lecture 1 of week 1

The question on the quiz was: "What is the definition of a (metric) ball in a metric space?"

We began by showing that a norm always induces a metric, and noted that the discrete metric is not induced by a norm. After this we defined a ball in a metric space and the convergence of a sequence.

Lecture 2 of week 1

The question on the quiz was: "What is the definition of an open set?"

We defined the interior, boundary and exterior points of a set, as well as the closure of a set. (Rougly section 1.2. in Tao's book. We will prove some more properties on friday. The definition we use in the book (and used in the lectures) is equivalent to another defintion which is more handy in proofs. I mentioned in the lectures that these two definitions equal, but here is a proof written out formally.

Lecture 3 of week 1

The question on the quiz was: "What is the definition of an adherent point (a.k.a. closure point or point of closure or contact point) of a subset of a metric space?"

We talked about adherent points and their connection to closure. This means that we have now gone through the theory on 1.1.1. (Definitions an Examples) and 1.1.2. (Some point set topology of metric spaces) from Tao's book.

Week 0

Pre-lectures, i.e. What will happen on Math 131B?

The course 131B has roughly three main themes. For the first 3.5 weeks we will mostly study the theory of Metric Spaces. During this time we will discover that many of the notions given on earlier courses, e.g. continuity of functions, convergence of sequences, can be meaningfully defined outside the setting of the real line - all that we need is a concept of distance. Such a distance, or a metric, is our main focus for the first few weeks.

The second part of the course, weeks 4-6, focuses on power series and their theory. Much like series of numbers, which can heuristically be thought as "infinite sums of numbers", we can in a similar way take "infinte sums of functions". This gives rise to a surprising amount of useful techniques.

The final part of the course aims to the definition of the Fourier transformation and the Fourier series. Together with differential equations Fourier analysis is not only a beautiful mathematical theory, but also immensely applicable in physics and engineering.

Lecture null - Thursday September 22nd

We went through the practical matters of the course - all practical info should be available on the course webpage. Beyond this, we talked a bit about what we are going to do in the next 10 weeks and what prequisites are especially needed:

Lecture 0 - Friday September 23rd

The question on the quiz was: "What is the definition of a metric?"

We defined what is a metric and a metric space, and proved that the max-metric in the plane and the sup-metric in the space of continuous functions are metrics. The sup-metric in the space of continuous functions was a bit abstract (and somewhat technical) proof, so here is the proof written out explicitly. I recommend looking at Tao's book, pages 1-5 for more interesting examples of metrics!